Contact treatment in isogeometric analysis with NURBS

Abstract We study NURBS-based isogeometric analysis of contact problems and compare with standard C 0 -continuous Lagrange finite elements. A knot-to-surface (KTS) algorithm is developed to treat the contact constraints with NURBS contact surface discretizations. Qualitative studies deliver satisfactory results for various finite deformation frictionless thermoelastic contact problems. Quantitative studies based on the Hertz problem suggest the need for a relaxation of the mechanical contact constraints that appear in the standard KTS approach. The improved mortar-based KTS algorithm delivers robust and accurate results for NURBS discretizations. Based on numerical examples, we conclude that NURBS-based isogeometric analysis is a viable technology for contact problems and offers potential accuracy as well as convergence improvements over C 0 -continuous finite elements.

[1]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[2]  Peter Wriggers,et al.  Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .

[3]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[4]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[5]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[6]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[7]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[8]  Wolfgang A. Wall,et al.  A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .

[9]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[10]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[11]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[12]  Pierre Alart,et al.  A FRICTIONAL CONTACT ELEMENT FOR STRONGLY CURVED CONTACT PROBLEMS , 1996 .

[13]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[14]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[15]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[16]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[17]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[18]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[19]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[20]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[21]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[22]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[23]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[24]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[25]  Tod A. Laursen,et al.  A segment-to-segment mortar contact method for quadratic elements and large deformations , 2008 .

[26]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[27]  J. Tinsley Oden,et al.  Computational methods in nonlinear mechanics , 1980 .

[28]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[29]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[30]  Barbara Wohlmuth,et al.  Thermo-mechanical contact problems on non-matching meshes , 2009 .

[31]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[32]  E. Rank,et al.  Erratum to: A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem , 2010 .

[33]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[34]  P. Chadwick,et al.  Modified entropic elasticity of rubberlike materials , 1984 .

[35]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[36]  Sung-Kie Youn,et al.  Shape optimization and its extension to topological design based on isogeometric analysis , 2010 .

[37]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[38]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[39]  Seung-Hyun Ha,et al.  Isogeometric shape design optimization: exact geometry and enhanced sensitivity , 2009 .

[40]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[41]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[42]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[43]  A. Curnier,et al.  An augmented Lagrangian method for discrete large‐slip contact problems , 1993 .

[44]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[45]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[46]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[47]  A. Klarbring,et al.  Rigid contact modelled by CAD surface , 1990 .

[48]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[49]  U. Nackenhorst,et al.  Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact , 2008 .

[50]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .