A Singly-Expenential Stratification Scheme for Real Semi-Algebraic Varieties and Its Applications

Chazelle, B., H. Edelsbrunner, L.J. Guibas and M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications, Theoretical Computer Science 84 (1991) 77-105. This paper describes an effective procedure for stratifying a real semi-algebraic set into cells of constant description size. The attractive feature of our method is that the number of cells produced is singly exponential in the number of input variables. This compares favorably with the doubly exponential size of Collins’ decomposition. Unlike Collins’ construction, however, our scheme does not produce a cell complex but only a smooth stratification. Nevertheless, we are able to apply our results in interesting ways to problems of point location and geometric optimization.

[1]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[2]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[3]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[4]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[5]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[6]  Bernard Chazelle,et al.  Triangulating a non-convex polytype , 1989, SCG '89.

[7]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[8]  Richard Cole,et al.  Searching and Storing Similar Lists , 2018, J. Algorithms.

[9]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[10]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[11]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[12]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[13]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[14]  Bernard Chazelle,et al.  An Algorithm for Generalized Point Location and its Applications , 1990, J. Symb. Comput..

[15]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[16]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[17]  Michel Coste,et al.  Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..

[18]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[19]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[20]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[21]  J. Milnor On the Betti numbers of real varieties , 1964 .

[22]  C. Traverso,et al.  Shape determination for real curves and surfaces , 1983, ANNALI DELL UNIVERSITA DI FERRARA.

[23]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[24]  H. Whitney Elementary Structure of Real Algebraic Varieties , 1957 .

[25]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[26]  Chee-Keng Yap,et al.  Algebraic cell decomposition in NC , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[27]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[28]  M. Atallah Some dynamic computational geometry problems , 1985 .

[29]  Rüdiger Loos,et al.  Polynomial real root isolation by differentiation , 1976, SYMSAC '76.

[30]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[31]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[32]  Mikhail J. Atallah,et al.  Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[33]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[34]  Dennis Soule Arnon Algorithms for the geometry of semi-algebraic sets , 1981 .

[35]  David Prill On Approximations and Incidence in Cylindrical Algebraic Decompositions , 1986, SIAM J. Comput..

[36]  R. Loos Computing in Algebraic Extensions , 1983 .

[37]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[38]  Bernard Chazelle Some techniques for geometric searching with implicit set representations , 1987, Acta Informatica.

[39]  Leonidas J. Guibas,et al.  The complexity of many faces in arrangements of lines of segments , 1988, SCG '88.

[40]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[41]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[42]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[43]  J. Schwartz,et al.  Differential geometry and topology , 1968 .

[44]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[45]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.