Hydrothermal synthesis of TiO2 nanorods arrays on ITO

[1]  J. Fransaer,et al.  Nanostructured composites of one-dimensional TiO2 and reduced graphene-oxide for efficient dye-sensitized solar cells , 2017 .

[2]  N. R. Khalid,et al.  Microwave-assisted synthesis of Ag–TiO2/graphene composite for hydrogen production under visible light irradiation , 2016 .

[3]  Z. Zainal,et al.  Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance , 2016 .

[4]  Zhen Jin,et al.  Synthesis of Ag-decorated porous TiO 2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity , 2016 .

[5]  Hongdi Xiao,et al.  Structural and optical properties of anatase TiO2 heteroepitaxial films prepared by MOCVD , 2016 .

[6]  M. Marandi,et al.  Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO2 nanocrystals and P25 TiO2 nanoparticles , 2016, Bulletin of Materials Science.

[7]  Xingzhong Zhao,et al.  Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles , 2016 .

[8]  B. Ghosh,et al.  Study of surface chemistry and microstructure of TiO2 nanostructures on Pt(111)/Si wafer and FTO glass substrates: a comparative approach , 2016 .

[9]  Huey-Jiuan Lin,et al.  Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process , 2016 .

[10]  K. Teshima,et al.  Crystal structure and photoelectric conversion properties of eosin Y-adsorbing ZnO films prepared by electroless deposition , 2016 .

[11]  Jun Yu,et al.  Preparation and Optical Properties of TiO2 Film with a Nest-Like Structure by Three Times of Circulating Hydrothermal Method , 2016 .

[12]  J. Ramkumar,et al.  Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices , 2016 .

[13]  Jinlong Zhang,et al.  Template-free synthesis of hollow anatase TiO2 microspheres through stepwise water-releasing strategy , 2016 .

[14]  R. Chassagnon,et al.  Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor , 2015 .

[15]  F. Rizzo,et al.  Thermal and mechanical properties of polyamide 11 based composites reinforced with surface modified titanate nanotubes , 2015 .

[16]  Kuk Cho,et al.  Enhanced dye stability in dye-sensitized solar cells using 1D-structured titanate , 2015 .

[17]  Yong Han,et al.  Interfacial structure of the firmly adhered TiO2 nanotube films to titanium fabricated by a modified anodization , 2015 .

[18]  D. Manfredi,et al.  Thick mesoporous TiO2 films through a sol–gel method involving a non-ionic surfactant: Characterization and enhanced performance for water photo-electrolysis , 2014 .

[19]  L. Lozzi,et al.  The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol–gel thin films , 2014 .

[20]  K. Ho,et al.  TiO 2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells , 2014 .

[21]  N. Dasgupta,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[22]  P. Fang,et al.  Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets , 2013 .

[23]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[24]  Wuyi Zhou,et al.  Ho/TiO2 nanowires heterogeneous catalyst with enhanced photocatalytic properties by hydrothermal synthesis method , 2012 .