Correlation functions, entanglement and chaos in the T ¯ T /J ¯ T -deformed CFTs

: In this paper, we regard the T ¯ T / J ¯ T -deformed CFTs as perturbation theories and calculate the first order correction of the correlation functions due to the T ¯ T / J ¯ T - deformation. As applications, we study the R´enyi entanglement entropy of excited state in the T ¯ T / J ¯ T -deformed two-dimensional CFTs. We find, up to the first order perturbation of the deformation, the R´enyi entanglement entropy of locally excited states will acquire a non-trivial time dependence. The excess of the R´enyi entanglement entropy of locally excited state is changed up to order O ( c ). Furthermore, the out of time ordered correlation function is investigated to confirm that the T ¯ T / J ¯ T -deformations do not change the maximal chaotic behavior of holographic CFTs up to the first order of the deformations.

[1]  D. Gross,et al.  TT¯ in AdS2 and quantum mechanics , 2019, Physical Review D.

[2]  A. Sfondrini,et al.  TT¯ flows and (2, 2) supersymmetry , 2019, Physical Review D.

[3]  Keun-Young Kim,et al.  Entanglement and Rényi entropy of multiple intervals in TT¯ -deformed CFT and holography , 2019, Physical Review D.

[4]  A. Sfondrini,et al.  On TT¯ deformations and supersymmetry , 2019 .

[5]  T. Takayanagi,et al.  Double local quenches in 2D CFTs and gravitational force , 2019, Journal of High Energy Physics.

[6]  Y. Nakayama Holographic dual of conformal field theories with very special TJ¯ deformations , 2019, Physical Review D.

[7]  Yuya Kusuki,et al.  Entanglement entropy, OTOC and bootstrap in 2D CFTs from Regge and light cone limits of multi-point conformal block , 2019, Journal of High Energy Physics.

[8]  Toshihiro Ota Comments on holographic entanglements in cutoff AdS , 2019, 1904.06930.

[9]  A. Sfondrini,et al.  TT¯ deformations with N=(0,2) supersymmetry , 2019, Physical Review D.

[10]  Y. Nomura,et al.  Comments on holographic entanglement entropy in TT deformed conformal field theories , 2019, Physical Review D.

[11]  A. Banerjee,et al.  Entanglement entropy for TT deformed CFT in general dimensions , 2019, Nuclear Physics B.

[12]  T. Takayanagi,et al.  Holographic quantum circuits from splitting/joining local quenches , 2019, Journal of High Energy Physics.

[13]  S. Datta,et al.  Sphere partition functions & cut-off AdS , 2019, Journal of High Energy Physics.

[14]  Yuan Sun,et al.  Note on the Rényi entropy of 2D perturbed fermions , 2019, Physical Review D.

[15]  Wei Song,et al.  Entanglement and chaos in warped conformal field theories , 2018, Journal of High Energy Physics.

[16]  T. Takayanagi,et al.  Holographic quantum circuits from splitting/joining local quenches , 2018, Journal of High Energy Physics.

[17]  M. Lashkevich,et al.  The complex sinh-Gordon model: form factors of descendant operators and current-current perturbations , 2018, Journal of High Energy Physics.

[18]  Yuya Kusuki Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity , 2018, Journal of High Energy Physics.

[19]  Soumangsu Chakraborty Wilson loop in a TT‾ like deformed CFT2 , 2018, Nuclear Physics B.

[20]  Thomas Hartman,et al.  Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.

[21]  Song He Conformal bootstrap to Rényi entropy in 2D Liouville and super-Liouville CFTs , 2017, Physical Review D.

[22]  J. Cardy T T deformation of correlation functions , 2019 .

[23]  S. Sethi,et al.  Supersymmetry and T T deformations , 2019 .

[24]  O. Aharony,et al.  Modular covariance and uniqueness of J ¯ T deformed CFTs , 2019 .

[25]  M. Mezei,et al.  Solving a family of T T̄ -like theories , 2019 .

[26]  Wei Song,et al.  Heating up holography for single-trace J (cid:22) T deformations , 2019 .

[27]  M. M. Sheikh-Jabbari,et al.  Holographic integration of T T̄ & JT̄ via O ( d , d ) , 2019 .

[28]  Yunfeng Jiang Expectation value of TT operator in curved spacetimes , 2019 .

[29]  Chanyong Park Holographic entanglement entropy in cutoff AdS , 2018, International Journal of Modern Physics A.

[30]  Vasudev Shyam Finite cutoff AdS5 holography and the generalized gradient flow , 2018, Journal of High Energy Physics.

[31]  S. Dubovsky,et al.  Undressing confining flux tubes with TT¯ , 2018, Physical Review D.

[32]  Bin Chen,et al.  Entanglement entropy in TT¯ -deformed CFT , 2018, Physical Review D.

[33]  Masamichi Miyaji Time evolution after double trace deformation , 2018, Journal of High Energy Physics.

[34]  M. Taylor TT deformations in general dimensions , 2018, 1805.10287.

[35]  D. Kutasov,et al.  Entanglement beyond AdS , 2018, Nuclear Physics B.

[36]  A. Sfondrini,et al.  Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.

[37]  Wu-zhong Guo,et al.  Entanglement entropy in (1+1)D CFTs with multiple local excitations , 2018, 1802.08815.

[38]  D. Kutasov,et al.  Holography Beyond AdS , 2017, Nuclear Physics B.

[39]  Monica Guica An integrable Lorentz-breaking deformation of two-dimensional CFTs , 2017, SciPost Physics.

[40]  D. Marolf,et al.  Cutoff AdS 3 versus the T T deformation , 2018 .

[41]  G. Giribet T (cid:22) T -deformations, AdS/CFT and correlation functions , 2018 .

[42]  O. Aharony,et al.  The T T deformation at large central charge , 2018 .

[43]  J. Cardy The T T deformation of quantum field theory as random geometry , 2018 .

[44]  H. Verlinde,et al.  Moving the CFT into the bulk with T (cid:22) T , 2018 .

[45]  S. Dubovsky,et al.  T (cid:22) T partition function from topological gravity , 2018 .

[46]  S. Datta,et al.  TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed partition functions , 2018, Journal of High Energy Physics.

[47]  G. Bonelli,et al.  T ¯ T -deformations in closed form , 2018 .

[48]  J. Cardy Prepared for submission to JHEP TT deformations of non-Lorentz invariant field theories , 2018 .

[49]  A. Bzowski,et al.  The holographic interpretation of JT̄-deformed CFTs , 2018 .

[50]  M. Tierz,et al.  Large N phase transition in TT -deformed 2d Yang–Mills theory on the sphere , 2018 .

[51]  B. Bonn T T , 2018 .

[52]  Feng-Li Lin,et al.  Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis , 2017, Journal of High Energy Physics.

[53]  D. Kutasov,et al.  A solvable irrelevant deformation of AdS3/CFT2 , 2017, 1707.05800.

[54]  T. Takayanagi,et al.  Holographic entanglement entropy of local quenches in AdS4/CFT3: a finite-element approach , 2017, 1705.04705.

[55]  Feng-Li Lin,et al.  Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT , 2017, Journal of High Energy Physics.

[56]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[57]  Vasudev Shyam Background independent holographic dual to T ¯ T deformed CFT with large central charge in 2 dimensions , 2017 .

[58]  S. Dubovsky,et al.  Asymptotic fragility, near AdS 2 holography and T (cid:22) T , 2017 .

[59]  Eric Perlmutter Bounding the space of holographic CFTs with chaos , 2016, 1602.08272.

[60]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[61]  Wu-zhong Guo,et al.  Entanglement entropy for descendent local operators in 2D CFTs , 2015, 1507.01157.

[62]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[63]  Wu-zhong Guo,et al.  Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs , 2015, 1501.00757.

[64]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[65]  Daniel A. Roberts,et al.  Two-dimensional conformal field theory and the butterfly effect , 2014, 1412.5123.

[66]  T. Takayanagi,et al.  Quantum entanglement of localized excited states at finite temperature , 2014, Journal of High Energy Physics.

[67]  T. Takayanagi,et al.  Entanglement of local operators in large-N conformal field theories , 2014, 1405.5946.

[68]  J. Kaplan,et al.  Universality of long-distance AdS physics from the CFT bootstrap , 2014, 1403.6829.

[69]  T. Takayanagi,et al.  Quantum dimension as entanglement entropy in two dimensional conformal field theories , 2014 .

[70]  T. Takayanagi,et al.  Quantum entanglement of local operators in conformal field theories. , 2014, Physical review letters.

[71]  F. Gliozzi,et al.  Quantisation of the effective string with TBA , 2013, 1305.1278.

[72]  R. Flauger,et al.  Solving the simplest theory of quantum gravity , 2012, 1205.6805.

[73]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[74]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[75]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[76]  A. Zamolodchikov Expectation value of composite field $T{\bar T}$ in two-dimensional quantum field theory , 2004, hep-th/0401146.

[77]  H. Osborn,et al.  Conformal four point functions and the operator product expansion , 2000, hep-th/0011040.

[78]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[79]  G. Moore,et al.  Naturality in Conformal Field Theory , 1989 .

[80]  G. Moore,et al.  Polynomial equations for rational conformal field theories , 1988 .