Genotyping technologies for all.

[1]  J. Landers,et al.  Using high-throughput SNP technologies to study cancer , 2006, Oncogene.

[2]  Jiannis Ragoussis,et al.  Affymetrix GeneChip® system: moving from research to the clinic , 2006, Expert review of molecular diagnostics.

[3]  K. Hemminki,et al.  Identification of frequent chromosome copy-number polymorphisms by use of high-resolution single-nucleotide-polymorphism arrays. , 2006, American Journal of Human Genetics.

[4]  Martin Farrall,et al.  Genetic susceptibility to coronary artery disease: from promise to progress , 2006, Nature Reviews Genetics.

[5]  P. Hardenbol,et al.  Optimal genotype determination in highly multiplexed SNP data , 2006, European Journal of Human Genetics.

[6]  Rolf Backofen,et al.  Single-nucleotide polymorphisms in NAGNAG acceptors are highly predictive for variations of alternative splicing. , 2006, American journal of human genetics.

[7]  Nicolas Peyret,et al.  The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. , 2005, Journal of biomolecular techniques : JBT.

[8]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[9]  Cisca Wijmenga,et al.  Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays. , 2005, Cancer research.

[10]  John K Field,et al.  Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Morris,et al.  Gearing up for genome-wide gene-association studies. , 2005, Human molecular genetics.

[12]  B. Shastry,et al.  Genetic diversity and new therapeutic concepts , 2005, Journal of Human Genetics.

[13]  M. Rhodes,et al.  Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. , 2005, Mutation research.

[14]  C. Cantor,et al.  A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. , 2005, Mutation research.

[15]  K. Gunderson,et al.  High-throughput SNP genotyping on universal bead arrays. , 2005, Mutation research.

[16]  Michael Olivier,et al.  The Invader assay for SNP genotyping. , 2005, Mutation research.

[17]  A. Syvänen Toward genome-wide SNP genotyping , 2005, Nature Genetics.

[18]  G. Denomme,et al.  High‐throughput multiplex single‐nucleotide polymorphism analysis for red cell and platelet antigen genotypes , 2005, Transfusion.

[19]  K. Gunderson,et al.  A genome-wide scalable SNP genotyping assay using microarray technology , 2005, Nature Genetics.

[20]  Fuli Yu,et al.  Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. , 2005, Genome research.

[21]  S. P. Fodor,et al.  Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays , 2004, Nature Methods.

[22]  S. P. Fodor,et al.  Large-scale genotyping of complex DNA , 2003, Nature Biotechnology.

[23]  Ronald W. Davis,et al.  Multiplexed genotyping with sequence-tagged molecular inversion probes , 2003, Nature Biotechnology.

[24]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[25]  Ching Yu Austin Huang,et al.  SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. , 2002, BioTechniques.

[26]  A. Oliphant,et al.  BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. , 2002, BioTechniques.

[27]  G. Breen Novel and alternate SNP and genetic technologies. , 2002, Psychiatric genetics.

[28]  Mostafa Ronaghi,et al.  Pyrosequencing™: An accurate detection platform for single nucleotide polymorphisms , 2002, Human mutation.

[29]  M. Mhlanga,et al.  Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. , 2001, Methods.

[30]  A. Syvänen Accessing genetic variation: genotyping single nucleotide polymorphisms , 2001, Nature Reviews Genetics.

[31]  I. Gut,et al.  Automation in genotyping of single nucleotide polymorphisms , 2001, Human mutation.

[32]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[33]  M M Shi,et al.  Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. , 2001, Clinical chemistry.

[34]  H. Lehrach,et al.  Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. , 2000, Nucleic acids research.

[35]  A. Syvänen,et al.  Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5'-nuclease TaqMan assay and Molecular Beacon probes. , 2000, BioTechniques.

[36]  Weihua Chang,et al.  Whole-genome genotyping with the single-base extension assay , 2005, Nature Methods.

[37]  K. Livak SNP Genotyping by the ′’-Nuclease Reaction , 2003 .

[38]  D. van den Boom,et al.  MALDI-TOF mass spectrometry-based SNP genotyping. , 2003, Methods in molecular biology.

[39]  Charles R Cantor,et al.  The use of MassARRAY technology for high throughput genotyping. , 2002, Advances in biochemical engineering/biotechnology.

[40]  L. Feuk,et al.  Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. , 2001, Genome research.