Augmentation schemes for particle MCMC
暂无分享,去创建一个
[1] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[2] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[3] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[4] On Rates of Convergence of Stochastic Relaxation for Gaussian and Non-Gaussian Distributions* , 1991 .
[5] Y. Amit. On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .
[6] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[7] M. Pitt,et al. Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models , 1999 .
[8] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[9] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[10] P. Fearnhead,et al. An improved particle filter for non-linear problems , 1999 .
[11] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[12] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[13] P. Donnelly,et al. Association mapping in structured populations. , 2000, American journal of human genetics.
[14] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[15] Xiao-Li Meng,et al. The Art of Data Augmentation , 2001 .
[16] Amir Dembo,et al. Remarks on the maximum correlation coefficient , 2001 .
[17] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[18] Peter Donnelly,et al. Assessing population differentiation and isolation from single‐nucleotide polymorphism data , 2002 .
[19] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[20] M. Feldman,et al. Genetic Structure of Human Populations , 2002, Science.
[21] P. Fearnhead. MCMC, sufficient statistics and particle filters. , 2002 .
[22] P. Fearnhead. Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .
[23] M. Stephens,et al. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.
[24] M. Stephens,et al. Traces of Human Migrations in Helicobacter pylori Populations , 2003, Science.
[25] Gareth O. Roberts,et al. Non-centred parameterisations for hierarchical models and data augmentation. , 2003 .
[26] P. Fearnhead,et al. On‐line inference for hidden Markov models via particle filters , 2003 .
[27] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[28] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[29] D. Reich,et al. Population Structure and Eigenanalysis , 2006, PLoS genetics.
[30] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[31] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[32] Darren J. Wilkinson,et al. Discussion of Particle Markov chain Monte Carlo , 2008 .
[33] Paul Fearnhead,et al. Computational methods for complex stochastic systems: a review of some alternatives to MCMC , 2008, Stat. Comput..
[34] Roman Holenstein,et al. Particle Markov chain Monte Carlo , 2009 .
[35] Robert B. Gramacy,et al. Particle Learning of Gaussian Process Models for Sequential Design and Optimization , 2009, 0909.5262.
[36] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[37] Nicholas G. Polson,et al. Particle Learning and Smoothing , 2010, 1011.1098.
[38] Nicholas G. Polson,et al. Particle learning for general mixtures , 2010 .
[39] David A. Rasmussen,et al. Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series , 2011, PLoS Comput. Biol..
[40] Paul Fearnhead,et al. MCMC for State–Space Models , 2011 .
[41] Darren J Wilkinson,et al. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.
[42] Tobias Rydén,et al. Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling , 2011, IEEE Transactions on Signal Processing.
[43] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[44] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[45] Christophe Andrieu,et al. Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.
[46] John Parslow,et al. On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler , 2012, SIAM/ASA J. Uncertain. Quantification.
[47] Sumeetpal S. Singh,et al. On the Particle Gibbs Sampler , 2013 .
[48] Robert Kohn,et al. On general sampling schemes for Particle Markov chain Monte Carlo methods , 2014 .
[49] Frank D. Wood,et al. A New Approach to Probabilistic Programming Inference , 2014, AISTATS.
[50] P. Moral,et al. On Feynman-Kac and particle Markov chain Monte Carlo models , 2014 .
[51] P. Fearnhead,et al. Particle Metropolis-adjusted Langevin algorithms , 2014, 1412.7299.
[52] Fredrik Lindsten,et al. Particle gibbs with ancestor sampling , 2014, J. Mach. Learn. Res..
[53] P. Fearnhead,et al. Particle Metropolis adjusted Langevin algorithms for state-space models , 2014, 1402.0694.
[54] Christian P. Robert,et al. An introduction to the special issue “Joint IMS-ISBA meeting - MCMSki 4” , 2015, Stat. Comput..
[55] Johan Dahlin,et al. Particle Metropolis–Hastings using gradient and Hessian information , 2013, Statistics and Computing.
[56] Christophe Andrieu,et al. Introduction to “Particle Metropolis-Hastings using gradient and Hessian information” by J. Dahlin, F. Lindsten, T. Schön , 2015, Stat. Comput..
[57] J. Rosenthal,et al. On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.