Zeeman ratchets for ballistic spin currents

We investigate the possiblity of creating directed spin-polarized currents in a two-dimensional electron gas (2DEG) subject to an asymmetric magnetic field and an external adiabatic driving. We thereby generalize concepts of quantum charge ratchets to the case with spin. Due to the Zeeman term in the Hamiltonian, spin-up and -down electrons experience different effective potentials, which can be tailored to achieve net spin currents without corresponding charge currents. We consider ballistic, coherent transport in waveguides defined in a 2DEG, where the magnetic field modulation is induced by ferromagnetic stripes on top of the 2DEG.