The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal

Quorum sensing, a cell‐to‐cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans‐encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum‐sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base‐pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen‐responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen‐limited growth in P. aeruginosa biofilms.

[1]  Dennis K. Gascoigne,et al.  Sequence Analysis , 2020, Definitions.

[2]  J. Imlay,et al.  The SoxRS response of Escherichia coli is directly activated by redox‐cycling drugs rather than by superoxide , 2011, Molecular microbiology.

[3]  G. Storz,et al.  Reprogramming of anaerobic metabolism by the FnrS small RNA , 2010, Molecular microbiology.

[4]  B. Kallipolitis,et al.  Translational Regulation of Gene Expression by an Anaerobically Induced Small Non-coding RNA in Escherichia coli* , 2010, The Journal of Biological Chemistry.

[5]  E. Sonnleitner,et al.  Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa , 2009, Proceedings of the National Academy of Sciences.

[6]  T. Tolker-Nielsen,et al.  Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation , 2009, Molecular microbiology.

[7]  J. Vogel,et al.  Activation of gene expression by small RNA. , 2009, Current opinion in microbiology.

[8]  M. Ishii,et al.  Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[9]  J. Vogel,et al.  Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation , 2009, Nature Structural &Molecular Biology.

[10]  J. Vogel,et al.  Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. , 2009, Research in microbiology.

[11]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[12]  J. Vogel,et al.  Small RNA binding to 5' mRNA coding region inhibits translational initiation. , 2008, Molecular cell.

[13]  H. Uchiyama,et al.  Influence of the Pseudomonas Quinolone Signal on Denitrification in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[14]  Monika J. Madej,et al.  Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. , 2008, Microbiology.

[15]  T. Leto,et al.  The Pseudomonas Toxin Pyocyanin Inhibits the Dual Oxidase-Based Antimicrobial System as It Imposes Oxidative Stress on Airway Epithelial Cells1 , 2008, The Journal of Immunology.

[16]  E. Pesci,et al.  PqsE Functions Independently of PqsR-Pseudomonas Quinolone Signal and Enhances the rhl Quorum-Sensing System , 2008, Journal of bacteriology.

[17]  Tracy K. Teal,et al.  Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria , 2008, Science.

[18]  C. Reimmann,et al.  Adaptation of Aerobically Growing Pseudomonas aeruginosa to Copper Starvation , 2008, Journal of bacteriology.

[19]  F. Rojo,et al.  The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator. , 2008, Environmental microbiology.

[20]  B. Iglewski,et al.  P. aeruginosa Biofilms in CF Infection , 2008, Clinical reviews in allergy & immunology.

[21]  S. Heeb,et al.  Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species , 2008, BMC Genomics.

[22]  J. Vogel,et al.  Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation , 2008, PLoS biology.

[23]  C. K. Vanderpool,et al.  A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide , 2007, Proceedings of the National Academy of Sciences.

[24]  E. Sonnleitner,et al.  The C-terminal domain of Escherichia coli Hfq is required for regulation , 2007, Nucleic acids research.

[25]  J. Vogel,et al.  A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. , 2007, Genes & development.

[26]  Jean-François Jacques,et al.  The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis , 2007, Molecular microbiology.

[27]  F. Vandenesch,et al.  Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. , 2007, Genes & development.

[28]  J. Vogel,et al.  An antisense RNA inhibits translation by competing with standby ribosomes. , 2007, Molecular cell.

[29]  S. Gottesman,et al.  σE Regulates and Is Regulated by a Small RNA in Escherichia coli , 2007 .

[30]  E. Pesci,et al.  Two Distinct Pathways Supply Anthranilate as a Precursor of the Pseudomonas Quinolone Signal , 2007, Journal of bacteriology.

[31]  Branislav Vecerek,et al.  Control of Fur synthesis by the non‐coding RNA RyhB and iron‐responsive decoding , 2007, The EMBO journal.

[32]  V. Kaberdin,et al.  Translation initiation and the fate of bacterial mRNAs. , 2006, FEMS microbiology reviews.

[33]  L. Eberl,et al.  Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[34]  H. Aiba,et al.  Base‐pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq , 2006, Molecular microbiology.

[35]  S. Lory,et al.  Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2 , 2006, Nucleic acids research.

[36]  S. Diggle,et al.  Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. , 2006, Chemistry & biology.

[37]  L. Rahme,et al.  Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. , 2006, Microbiology.

[38]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[39]  E. Greenberg,et al.  Hfq‐dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa , 2006, Molecular microbiology.

[40]  D. Newman,et al.  Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics , 2006, Nature chemical biology.

[41]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[42]  S. Gottesman Micros for microbes: non-coding regulatory RNAs in bacteria. , 2005, Trends in genetics : TIG.

[43]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[44]  L. Eberl,et al.  Quorum sensing: the power of cooperation in the world of Pseudomonas. , 2005, Environmental microbiology.

[45]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[46]  D. Hassett,et al.  The role of pyocyanin in Pseudomonas aeruginosa infection. , 2004, Trends in molecular medicine.

[47]  S. Gottesman The small RNA regulators of Escherichia coli: roles and mechanisms*. , 2004, Annual review of microbiology.

[48]  S. Gottesman,et al.  Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Pessi,et al.  Positive Control of Swarming, Rhamnolipid Synthesis, and Lipase Production by the Posttranscriptional RsmA/RsmZ System in Pseudomonas aeruginosa PAO1 , 2004, Journal of bacteriology.

[50]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Keel,et al.  RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA‐dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0 , 2003, Molecular microbiology.

[52]  G. Storz,et al.  Global analysis of small RNA and mRNA targets of Hfq , 2003, Molecular microbiology.

[53]  T. Afonyushkin,et al.  Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. , 2003, RNA.

[54]  S. Diggle,et al.  The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐dependency of the quorum sensing hierarchy, regulates rhl‐dependent genes at the onset of stationary phase and can be produced in the absence of LasR , 2003, Molecular microbiology.

[55]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[56]  I. Moll,et al.  RNA chaperone activity of the Sm‐like Hfq protein , 2003, EMBO reports.

[57]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[58]  David A. D'Argenio,et al.  Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants , 2002, Journal of bacteriology.

[59]  George M. Hilliard,et al.  Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. , 2002, Developmental cell.

[60]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[61]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Pessi,et al.  The Global Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants andN-Acylhomoserine Lactones in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[63]  L. Thomashow,et al.  Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1 , 2001, Journal of bacteriology.

[64]  A. Zhang,et al.  Hfq Is Necessary for Regulation by the Untranslated RNA DsrA , 2001, Journal of bacteriology.

[65]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[66]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[67]  L. Stoll,et al.  Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells , 1998, Infection and Immunity.

[68]  M. Cusick,et al.  Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. Majdalani,et al.  DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Stewart,et al.  Spatial Physiological Heterogeneity inPseudomonas aeruginosa Biofilm Is Determined by Oxygen Availability , 1998, Applied and Environmental Microbiology.

[71]  P. Visca,et al.  Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity , 1996, Journal of bacteriology.

[72]  D. Haas,et al.  The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. , 1996, Microbiology.

[73]  J M Tiedje,et al.  Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr , 1995, Journal of bacteriology.

[74]  T. Pitt,et al.  2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. , 1992, The Journal of antimicrobial chemotherapy.

[75]  C. Reimmann,et al.  Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli , 1991, Molecular microbiology.

[76]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[77]  S. Baron,et al.  Antibiotic action of pyocyanin , 1981, Antimicrobial Agents and Chemotherapy.

[78]  S. Gottesman,et al.  SigmaE regulates and is regulated by a small RNA in Escherichia coli. , 2007, Journal of bacteriology.

[79]  Miguel Cámara,et al.  The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. , 2007, Chemistry & biology.

[80]  T. Tolker-Nielsen,et al.  Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. , 2007, Microbiology.

[81]  Johannes H. Urban,et al.  Nucleic Acids Research Advance Access published January 30, 2007 Translational control and target recognition by Escherichia coli small RNAs in vivo , 2006 .

[82]  P. Højrup,et al.  Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. , 2002, Molecular cell.

[83]  G. Storz,et al.  The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. , 2002, Molecular cell.

[84]  B. Iglewski,et al.  Copyright © 1997, American Society for Microbiology Regulation of las and rhl Quorum Sensing in Pseudomonas aeruginosa , 1996 .

[85]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .