A New Rotor Fault Diagnosis Method Based on EEMD Sample Entropy and Grey Relation Degree

In this paper, a new rotor fault diagnosis method was proposed based on rank-order morphological filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey relation degree. Firstly, the sampled data was de-noised by rank-order morphological filter. Secondly, the de-noised signal was decomposed into a finite number of stationary intrinsic mode functions (IMFs). Thirdly, some IMFs containing the most dominant fault information were calculated the sample entropy for four rotor conditions. Finally, the grey relation degree between the symptom set and standard fault set was calculated as the identification evidence for fault diagnosis. The practical results show that this method is quite effective in rotor fault diagnosis. Its suitable for on-line monitoring and diagnosis of rotating machinery.