Box Particle Filtering for extended object tracking

This paper focuses on real-time tracking of an extended object in the presence of clutter. This task reduces to the estimation of the object kinematic state and its extent, based on multiple measurements originated from the same object. A solution to this challenging problem is presented within the recently proposed Box Particle Filtering framework. The Box Particle Filter replaces the point samples with regions, which we call boxes. The performance of the Box Particle Filter for extended object tracking is studied over a challenging scenario with simulated cluttered radar measurements, consisting of range and bearing components. The efficiency is evaluated for different levels of clutter, number of box particles, uncertainty regions for the measurements, number of the active sensors collecting the measurements data and iterations for the contraction of the uncertainty region. Accurate estimation results are demonstrated.

[1]  Simon J. Godsill,et al.  Sequential Monte Carlo framework for extended object tracking , 2005 .

[2]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[3]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[4]  Fahed Abdallah,et al.  Particle Filtering Combined with Interval Methods for Tracking Applications , 2012 .

[5]  |Marcus Baum,et al.  Random Hypersurface Models for extended object tracking , 2009, 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[6]  Fredrik Gustafsson,et al.  Track-before-detect algorithm for tracking extended targets , 2006 .

[7]  Branko Ristic,et al.  Introduction to the Box Particle Filtering , 2013 .

[8]  Daniel E. Clark,et al.  Extended object filtering using spatial independent cluster processes , 2010, 2010 13th International Conference on Information Fusion.

[9]  Lyudmila Mihaylova,et al.  Extended Object Tracking Using Monte Carlo Methods , 2008, IEEE Transactions on Signal Processing.

[10]  Fahed Abdallah,et al.  Mixture of uniform probability density functions for non linear state estimation using interval analysis , 2010, 2010 13th International Conference on Information Fusion.

[11]  Oliver E. Drummond,et al.  Tracking clusters and extended objects with multiple sensors , 1990 .

[12]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[13]  Branko Ristic,et al.  Bayesian Estimation With Imprecise Likelihoods: Random Set Approach , 2011, IEEE Signal Processing Letters.

[14]  Uwe D. Hanebeck,et al.  Extended object tracking based on combined set-theoretic and stochastic fusion , 2009, 2009 12th International Conference on Information Fusion.

[15]  O. E. Drummond Tracking clusters and extended objects with multiple sensors , 1990, Defense + Commercial Sensing.

[16]  Lyudmila Mihaylova,et al.  Extended Object Tracking Using Mixture Kalman Filtering , 2006, Numerical Methods and Applications.

[17]  Uwe D. Hanebeck,et al.  Shape tracking of extended objects and group targets with star-convex RHMs , 2011, 14th International Conference on Information Fusion.

[18]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[19]  W. Koch,et al.  A Bayesian approach to extended object tracking and tracking of loosely structured target groups , 2005, 2005 7th International Conference on Information Fusion.

[20]  Christian Lundquist,et al.  A Gaussian mixture PHD filter for extended target tracking , 2010, 2010 13th International Conference on Information Fusion.

[21]  Dietrich Fränken,et al.  Tracking of Extended Objects and Group Targets Using Random Matrices , 2008, IEEE Transactions on Signal Processing.

[22]  Simon J. Godsill,et al.  Poisson models for extended target and group tracking , 2005, SPIE Optics + Photonics.

[23]  Neil J. Gordon,et al.  Group and extended object tracking , 1999 .

[24]  Wolfgang Koch,et al.  Cluster tracking under kinematical constraints using random matrices , 2008, Robotics Auton. Syst..

[25]  Uwe D. Hanebeck,et al.  Extended Object and Group Tracking: A Comparison of Random Matrices and Random Hypersurface Models , 2010, GI Jahrestagung.

[26]  D. Salmond,et al.  Spatial distribution model for tracking extended objects , 2005 .

[27]  Fahed Abdallah,et al.  Box particle filtering for nonlinear state estimation using interval analysis , 2008, Autom..

[28]  Lyudmila Mihaylova,et al.  A novel Sequential Monte Carlo approach for extended object tracking based on border parameterisation , 2011, 14th International Conference on Information Fusion.