ARS2 instructs early transcription termination-coupled RNA decay by recruiting ZC3H4 to nascent transcripts.

[1]  Vicki A. M. Gold,et al.  A restrictor complex of ZC3H4, WDR82, and ARS2 integrates with PNUTS to control unproductive transcription. , 2023, Molecular cell.

[2]  T. Jensen,et al.  Dual agonistic and antagonistic roles of ZC3H18 provides for co-activation of distinct nuclear RNA decay pathways , 2023, bioRxiv.

[3]  K. Adelman,et al.  U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes. , 2023, Molecular cell.

[4]  T. Jensen,et al.  Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome , 2022, Molecular cell.

[5]  Jessie R Kelley,et al.  A CpG island-encoded mechanism protects genes from premature transcription termination , 2022, bioRxiv.

[6]  A. Sandelin,et al.  Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression , 2022, Molecular cell.

[7]  T. Jensen,et al.  Control of non-productive RNA polymerase II transcription via its early termination in metazoans. , 2022, Biochemical Society transactions.

[8]  M. Soler‐Lopez,et al.  Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex , 2022, Nature Communications.

[9]  Paul Theodor Pyl,et al.  Analysing high-throughput sequencing data in Python with HTSeq 2.0 , 2021, Bioinform..

[10]  C. Dienemann,et al.  Structural basis of Integrator-mediated transcription regulation , 2021, Science.

[11]  J. Steitz,et al.  STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. , 2021, Molecular cell.

[12]  Tamás Fischer,et al.  The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain , 2021, Nature communications.

[13]  T. Jensen,et al.  ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control. , 2021, Biochemical Society transactions.

[14]  N. Gray,et al.  The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer , 2021, Cell.

[15]  M. Eilers,et al.  Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets , 2021, Genes & development.

[16]  G. Natoli,et al.  A first exon termination checkpoint preferentially suppresses extragenic transcription , 2021, Nature Structural & Molecular Biology.

[17]  A. Monier,et al.  ZC3H4 restricts non-coding transcription in human cells , 2021, bioRxiv.

[18]  P. Cramer,et al.  Integrator is a genome-wide attenuator of non-productive transcription. , 2020, Molecular cell.

[19]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[20]  F. X. Chen,et al.  Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase , 2020, Science.

[21]  T. Jensen,et al.  NCBP3 positively impacts mRNA biogenesis , 2020, Nucleic acids research.

[22]  E. Wagner,et al.  Integrator Recruits Protein Phosphatase 2A to Prevent Pause Release and Facilitate Transcription Termination. , 2020, Molecular cell.

[23]  Anda Zhang,et al.  The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts , 2020, Cell reports.

[24]  Joshua D. Eaton,et al.  Termination of Transcription by RNA Polymerase II: BOOM! , 2020, Trends in genetics : TIG.

[25]  Mireille Melko,et al.  Mapping domains of ARS2 critical for its RNA decay capacity , 2020, Nucleic acids research.

[26]  D. Tatomer,et al.  Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. , 2020, Cold Spring Harbor symposia on quantitative biology.

[27]  A. Sandelin,et al.  A Two-Layered Targeting Mechanism Underlies Nuclear RNA Sorting by the Human Exosome. , 2020, Cell reports.

[28]  M. Selbach,et al.  The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay , 2020, Nucleic acids research.

[29]  L. Francis,et al.  A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes , 2019, Genes & development.

[30]  E. Wagner,et al.  The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes. , 2019, Molecular cell.

[31]  Michael A. Cortazar,et al.  Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo" Mechanism. , 2019, Molecular cell.

[32]  T. Jensen,et al.  Nuclear sorting of RNA , 2019, Wiley interdisciplinary reviews. RNA.

[33]  S. Thore,et al.  Structural insights into the 3'-end mRNA maturation machinery: Snapshot on polyadenylation signal recognition. , 2019, Biochimie.

[34]  E. Wagner,et al.  The Integrator complex cleaves nascent mRNAs to attenuate transcription , 2019, bioRxiv.

[35]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[36]  N. Brockdorff,et al.  Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination , 2018, bioRxiv.

[37]  Tanveer S. Batth,et al.  Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample Preparation , 2018, Molecular & Cellular Proteomics.

[38]  S. Mohammed,et al.  Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination , 2018, Cell reports.

[39]  T. Jensen,et al.  The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts , 2018, Cell reports.

[40]  Gregory T. Booth,et al.  A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II , 2018, Nature.

[41]  S. Cusack,et al.  Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting , 2018, Nature Communications.

[42]  W. V. van Cappellen,et al.  Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II , 2018, Proceedings of the National Academy of Sciences.

[43]  D. Tollervey,et al.  Surveillance-ready transcription: nuclear RNA decay as a default fate , 2018, Open Biology.

[44]  Masato T. Kanemaki,et al.  Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity , 2018, Genes & development.

[45]  Lea M. Harder,et al.  Characterizing ZC3H18, a Multi-domain Protein at the Interface of RNA Production and Destruction Decisions , 2018, Cell reports.

[46]  S. Cusack,et al.  Structural basis for mutually exclusive co-transcriptional nuclear cap-binding complexes with either NELF-E or ARS2 , 2017, Nature Communications.

[47]  Guohui Li,et al.  Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export , 2017, The EMBO journal.

[48]  T. Jensen,et al.  ARS2 is a general suppressor of pervasive transcription , 2017, Nucleic acids research.

[49]  Karina D. Sørensen,et al.  An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes , 2017, Cell systems.

[50]  R. Aebersold,et al.  Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics. , 2017, Cell systems.

[51]  Devin K. Schweppe,et al.  Architecture of the human interactome defines protein communities and disease networks , 2017, Nature.

[52]  Norman E. Davey,et al.  SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions , 2017, Nucleic Acids Res..

[53]  T. Jensen,et al.  Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate , 2017, Cell reports.

[54]  Maria Carmo-Fonseca,et al.  Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs , 2017, Molecular cell.

[55]  M. Rout,et al.  Protein Complex Affinity Capture from Cryomilled Mammalian Cells , 2016, Journal of visualized experiments : JoVE.

[56]  A. Sandelin,et al.  Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. , 2016, Molecular cell.

[57]  T. Jensen,et al.  Purification and analysis of endogenous human RNA exosome complexes , 2016, RNA.

[58]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[59]  Britta A. M. Bouwman,et al.  Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. , 2015, Molecular cell.

[60]  Spencer C. Alford,et al.  Mutagenesis of ARS2 Domains To Assess Possible Roles in Cell Cycle Progression and MicroRNA and Replication-Dependent Histone mRNA Biogenesis , 2015, Molecular and Cellular Biology.

[61]  H. Kimura,et al.  Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing , 2015, Cell.

[62]  D. Libri,et al.  Transcription termination and the control of the transcriptome: why, where and how to stop , 2015, Nature Reviews Molecular Cell Biology.

[63]  T. Jensen,et al.  The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. , 2015, Cell reports.

[64]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[65]  A. Hyman,et al.  The human cap-binding complex is functionally connected to the nuclear RNA exosome , 2013, Nature Structural &Molecular Biology.

[66]  T. Jensen,et al.  CBC–ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing , 2013, Nature Structural &Molecular Biology.

[67]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[68]  L. Alphey,et al.  PNUTS/PP1 Regulates RNAPII-Mediated Gene Expression and Is Necessary for Developmental Growth , 2013, PLoS genetics.

[69]  A. H. Smits,et al.  Quantitative Dissection and Stoichiometry Determination of the Human SET1/MLL Histone Methyltransferase Complexes , 2013, Molecular and Cellular Biology.

[70]  E. Wagner,et al.  snRNA 3′ End Formation Requires Heterodimeric Association of Integrator Subunits , 2012, Molecular and Cellular Biology.

[71]  J. Yong,et al.  Ars2 promotes proper replication-dependent histone mRNA 3' end formation. , 2012, Molecular cell.

[72]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[73]  T. Jensen,et al.  Interaction profiling identifies the human nuclear exosome targeting complex. , 2011, Molecular cell.

[74]  D. Fargo,et al.  Global Analysis of Short RNAs Reveals Widespread Promoter-Proximal Stalling and Arrest of Pol II in Drosophila , 2010, Science.

[75]  S. Vagner,et al.  Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation , 2009, Nucleic acids research.

[76]  J. Yong,et al.  Ars2 Links the Nuclear Cap-Binding Complex to RNA Interference and Cell Proliferation , 2009, Cell.

[77]  R. Aebersold,et al.  An integrated workflow for charting the human interaction proteome: insights into the PP2A system , 2009, Molecular systems biology.

[78]  Peng Fei Wang,et al.  Molecular Regulation of H3K4 Trimethylation by Wdr82, a Component of Human Set1/COMPASS , 2008, Molecular and Cellular Biology.

[79]  D. Skalnik,et al.  Wdr82 Is a C-Terminal Domain-Binding Protein That Recruits the Setd1A Histone H3-Lys4 Methyltransferase Complex to Transcription Start Sites of Transcribed Human Genes , 2007, Molecular and Cellular Biology.

[80]  D. Skalnik,et al.  Identification and Characterization of the Human Set1B Histone H3-Lys4 Methyltransferase Complex* , 2007, Journal of Biological Chemistry.

[81]  Mohamed-Ali Hakimi,et al.  Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C-Terminal Repeat of RNA Polymerase II , 2005, Cell.

[82]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[83]  OUP accepted manuscript , 2022, Nucleic Acids Research.