SPIN MANUALS: EMPIRICAL LOGIC TALKS QUANTUM MECHANICS

Publisher Summary This chapter presents the language of Empirical Logic that is constructed with the aim of allowing maximum freedom regarding what it can describe while at the same time continuing to discriminate among conceptually distinct ideas. It describes a particular collection of experiments called the spin experiments. The chapter is not about physics but it illustrates how to use the concepts of Empirical Logic to discuss a theory and explains how Empirical Logic can be used to make fine distinctions that would otherwise be obscured. Empirical Logic is general enough to describe any experimental arrangement that can be characterized by a collection of operations and it is tight enough to keep from confusing certain distinct ideas.

[1]  The theorem of Gleason for nonseparable hilbert spaces , 1975 .

[2]  Richard J. Greechie,et al.  On the structure of orthomodular lattices satisfying the chain condition , 1968 .

[3]  V. Bargmann,et al.  On Unitary ray representations of continuous groups , 1954 .

[4]  D. Catlin Spectral theory in quantum logics , 1968 .

[5]  S. Holland,et al.  The Current Interest in Orthomodular Lattices , 1975 .

[6]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[7]  C. H. Randall,et al.  Conditioning maps on orthomodular lattices , 1971, Glasgow Mathematical Journal.

[8]  David J. Foulis,et al.  Conditions for the modularity of an orthomodular lattice. , 1961 .

[9]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[10]  D. Foulis Semigroups Co-Ordinatizing Orthomodular Geometries , 1965, Canadian Journal of Mathematics.

[11]  D. J. Foulis,et al.  Operational statistics. II. Manuals of operations and their logics , 1973 .

[12]  Gottfried T. Rüttimann Closure operators and projections on involution posets , 1974 .

[13]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[14]  D. J. Foulis,et al.  The empirical logic approach to the physical sciences , 1974 .

[15]  Stable faces of a polytope , 1976 .

[16]  F. Herbut Derivation of the change of state in measurement from the concept of minimal measurement , 1969 .

[17]  The lattice of verifiable propositions of the spin‐1 system , 1977 .

[18]  Neal Zierler,et al.  Boolean Embeddings of Orthomodular Sets and Quantum Logic , 1965 .

[19]  C. H. Randall,et al.  Orthomodular generalizations of homogeneous Boolean algebras , 1973, Journal of the Australian Mathematical Society.

[20]  V. Bargmann NOTE ON WIGNER'S THEOREM ON SYMMETRY OPERATIONS , 1964 .

[21]  Marie A. Gaudard,et al.  Finitary imbeddings of certain generalized sample spaces , 1975 .

[22]  David J. Foulis,et al.  Relative inverses in Baer *-semigroups. , 1963 .

[23]  R. Greechie A particular non-atomistic orthomodular poset , 1969 .

[24]  David J. Foulis,et al.  The stability of pure weights under conditioning , 1974, Glasgow Mathematical Journal.

[25]  D. J. Foulis,et al.  The Operational Approach to Quantum Mechanics , 1978 .

[26]  C. H. Randall,et al.  Operational Statistics. I. Basic Concepts , 1972 .

[27]  Barbara Jeffcott,et al.  The center of an orthologic , 1972, Journal of Symbolic Logic.

[28]  R. Haag,et al.  An Algebraic Approach to Quantum Field Theory , 1964 .

[29]  C. Piron,et al.  Symmetry in Quantum Theory , 1963 .

[30]  T. A. Cook,et al.  States on quantum logics and their connection with a theorem of Alexandroff , 1977 .

[31]  T. A. Cook,et al.  The geometry of generalized quantum logics , 1978 .

[32]  L. Herman Semi-orthogonality in Rickart rings , 1971 .

[33]  David P. Sumner Graphs indecomposable with respect to the X-join , 1973, Discret. Math..

[34]  Ron Wright THE STATE OF THE PENTAGON A NONCLASSICAL EXAMPLE , 1978 .

[35]  I. Segal Postulates for General Quantum Mechanics , 1947 .

[36]  David J. Foulis,et al.  An Approach to Empirical Logic , 1970 .

[37]  Gottfried T. Rüttimann,et al.  Jordan-Hahn decomposition of signed weights on finite orthogonality spaces , 1977 .