A review of hydrodynamic and energy-transport models for semiconductor device simulation

Since Stratton published his famous paper four decades ago, various transport models have been proposed which account for the average carrier energy or temperature in one way or another. The need for such transport models arose because the traditionally used drift-diffusion model cannot capture nonlocal effects which gained increasing importance in modern miniaturized semiconductor devices. In the derivation of these models from Boltzmann's transport equation, several assumptions have to be made in order to obtain a tractable equation set. Although these assumptions may differ significantly, the resulting final models show various similarities, which has frequently led to confusion. We give a detailed review on this subject, highlighting the differences and similarities between the models, and we shed some light on the critical issues associated with higher order transport models.

[1]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[2]  R. Stratton,et al.  Diffusion of Hot and Cold Electrons in Semiconductor Barriers , 1962 .

[3]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[4]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[5]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[6]  R. Stratton,et al.  Semiconductor current-flow equations (diffusion and degeneracy) , 1972 .

[7]  P. Landsberg,et al.  Two formulations of semiconductor transport equations , 1977 .

[8]  A. H. Marshak,et al.  Electrical current in solids with position-dependent band structure , 1978 .

[9]  Effect of mesh spacing on static negative resistance in GaAs MESFET simulation , 1981, IEEE Transactions on Electron Devices.

[10]  Jeffrey Frey,et al.  AN EFFICIENT TECHNIQUE FOR TWO‐DIMENSIONAL SIMULATION OF VELOCITY OVERSHOOT EFFECTS IN Si AND GaAs DEVICES , 1982 .

[11]  K. Thornber,et al.  Current equations for velocity overshoot , 1982, IEEE Electron Device Letters.

[12]  J. Frey,et al.  Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFET's , 1982, IEEE Transactions on Electron Devices.

[13]  P. T. Landsberg,et al.  D grad ν or grad(Dν) , 1984 .

[14]  Ting-Wei Tang,et al.  Extension of the Scharfetter—Gummel algorithm to the energy balance equation , 1984 .

[15]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[16]  A. H. Marshak,et al.  Electrical current and carrier density in degenerate materials with nonuniform band structure , 1984, Proceedings of the IEEE.

[17]  G. Baccarani,et al.  An investigation of steady-state velocity overshoot in silicon , 1985 .

[18]  K. Singhal,et al.  A consistent nonisothermal extension of the Scharfetter—Gummel stable difference approximation , 1985, IEEE Electron Device Letters.

[19]  P. Ciampolini,et al.  Physical models for numerical device simulation , 1986 .

[20]  Mitiko Miura-Mattausch,et al.  The hot-electron problem in small semiconductor devices , 1986 .

[21]  Massimo Rudan,et al.  MULTI‐DIMENSIONAL DISCRETIZATION SCHEME FOR THE HYDRODYNAMIC MODEL OF SEMICONDUCTOR DEVICES , 1986 .

[22]  E. M. Azoff CLOSED‐FORM METHOD FOR SOLVING THE STEADY‐STATE GENERALISED ENERGY‐MOMENTUM CONSERVATION EQUATIONS , 1987 .

[23]  E. M. Azoff Generalized energy-momentum conservation equations in the relaxation time approximation , 1987 .

[24]  Robert J. Trew,et al.  Hydrodynamic hot-electron transport model with Monte Carlo-generated transport parameters , 1988 .

[25]  W. L. Engl,et al.  The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors , 1988 .

[26]  Masaaki Tomizawa,et al.  Nonstationary carrier dynamics in quarter-micron Si MOSFETs , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[27]  Roberto Guerrieri,et al.  A new discretization strategy of the semiconductor equations comprising momentum and energy balance , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[29]  C. Wilson Hydrodynamic carrier transport in semiconductors with multiple band minima , 1988 .

[30]  A generalized hydrodynamic model capable of incorporating Monte Carlo results (LDD MOS devices) , 1989, International Technical Digest on Electron Devices Meeting.

[31]  E. M. Azoff Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors , 1989 .

[32]  S. Selberherr MOS device modeling at 77 K , 1989 .

[33]  Improved relaxation-time formulation of collision terms for two-band hydrodynamic models , 1989 .

[34]  T. J. Bordelon,et al.  An efficient non-parabolic formulation of the hydrodynamic model for silicon device simulation , 1990, International Technical Digest on Electron Devices.

[35]  B. Riccò,et al.  An analytical model of the energy distribution of hot electrons , 1990 .

[36]  ON THE WELL‐POSEDNESS OF THE TWO‐DIMENSIONAL HYDRODYNAMIC MODEL FOR SEMICONDUCTOR DEVICES , 1990 .

[37]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[38]  R. A. Stewart,et al.  A fully nonparabolic hydrodynamic model for describing hot electron transport in GaAs , 1990 .

[39]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[40]  Tian,et al.  Hydrodynamic electron-transport model: Nonparabolic corrections to the streaming terms. , 1991, Physical review. B, Condensed matter.

[41]  Stanley Osher,et al.  Solution of the hydrodynamic device model using high-order nonoscillatory shock capturing algorithms , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[42]  J. Slotboom,et al.  Non-local impact ionization in silicon devices , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[43]  An analytical formulation of the length coefficient for the augmented drift-diffusion model including velocity overshoot , 1991 .

[44]  AN EXTENDED SCHARFETTER‐GUMMEL SCHEME FOR HIGH ORDER MOMENT EQUATIONS , 1991 .

[45]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[46]  Carl L. Gardner,et al.  Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device , 1991 .

[47]  B. Meinerzhagen,et al.  Hydrodynamic equations for semiconductors with nonparabolic band structure , 1991 .

[48]  Robert W. Dutton,et al.  Analysis of Spurious Velocity Overshoot in Hydrodynamic Simulations , 1992, NUPAD IV. Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits,.

[49]  Relaxation time approximation and mixing of hot and cold electron populations , 1992 .

[50]  T. Tang,et al.  Transport coefficients for a silicon hydrodynamic model extracted from inhomogeneous Monte-Carlo calculations , 1992 .

[51]  T. J. Bordelon,et al.  Accounting for bandstructure effects in the hydrodynamic model: A first-order approach for silicon device simulation , 1992 .

[52]  B. Meinerzhagen,et al.  A New Highly Efficient Nonlinear Relaxation Scheme for Hydrodynamic MOS Simulations , 1992, NUPAD IV. Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits,.

[53]  An energy-dependent two-dimensional substrate current model for the simulation of submicrometer MOSFET's , 1992, IEEE Electron Device Letters.

[54]  Geurts,et al.  Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. , 1992, Physical review. B, Condensed matter.

[55]  U. Ravaioli,et al.  An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects , 1992, IEEE Electron Device Letters.

[56]  A. D. Sadovnikov,et al.  A STUDY OF THE INFLUENCE OF HYDRODYNAMIC MODEL EFFECTS ON CHARACTERISTICS OF SILICON BIPOLAR TRANSISTORS , 1993 .

[57]  Jacob K. White,et al.  Computation of drain and substrate currents in ultra-short-channel nMOSFET's using the hydrodynamic model , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[58]  Robert W. Dutton,et al.  Dual Energy Transport Model with Coupled Lattice and Carrier Temperatures , 1993 .

[59]  Emad Fatemi,et al.  Upwind Finite Difference Solution of Boltzmann Equation Applied to Electron Transport in Semiconductor Devices , 1993 .

[60]  S. Ramaswamy,et al.  An improved hydrodynamic transport model for silicon , 1993 .

[61]  Ajeet Rohatgi,et al.  Non-isothermal extension of the Scharfetter-Gummel technique for hot carrier transport in heterostructure simulations , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[62]  M. Stettler,et al.  A critical examination of the assumptions underlying macroscopic transport equations for silicon devices , 1993 .

[63]  R. Trew,et al.  Construction of higher‐moment terms in the hydrodynamic electron‐transport model , 1993 .

[64]  L. Reyna,et al.  Generalized energy transport models for semiconductor device simulation , 1994 .

[66]  I. Bork,et al.  Influence of heat flux on the accuracy of hydrodynamic models for ultra-short Si MOSFETs , 1994, Proceedings of International Workshop on Numerical Modeling of processes and Devices for Integrated Circuits: NUPAD V.

[67]  Neil Goldsman,et al.  Highly stable and routinely convergent 2-dimensional hydrodynamic device simulation , 1994 .

[68]  Antonio Gnudi,et al.  COMPARATIVE STUDIES OF HYDRODYNAMIC AND ENERGY TRANSPORT MODELS , 1994 .

[69]  Y. Apanovich,et al.  Steady-state and transient analysis of submicron devices using energy balance and simplified hydrodynamic models , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[70]  Young-June Park,et al.  A time dependent hydrodynamic device simulator SNU-2D with new discretization scheme and algorithm , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[71]  Modeling of the hot electron subpopulation and its application to impact ionization in submicron silicon devices-Part II: numerical solutions , 1994 .

[72]  Antonio Gnudi,et al.  Hydrodynamic simulation of semiconductor devices operating at low temperature , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[73]  Siegfried Selberherr,et al.  A hybrid device simulator that combines Monte Carlo and drift-diffusion analysis , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[74]  Chiang-Sheng Yao,et al.  Impact ionization modeling using simulation of high energy tail distributions , 1994, IEEE Electron Device Letters.

[75]  Angelo Marcello Anile,et al.  SIMULATION OF n+−n−n+ DEVICES BY A HYDRODYNAMIC MODEL: SUBSONIC AND SUPERSONIC FLOWS , 1995 .

[76]  Branimir Pejcinovic,et al.  Two-dimensional tensor temperature extension of the hydrodynamic model and its applications , 1995 .

[77]  M. Ancona Hydrodynamic Models of Semiconductor Electron Transport at High Fields , 1995, VLSI Design.

[78]  J. Bude,et al.  Impact ionization and distribution functions in sub-micron nMOSFET technologies , 1995, IEEE Electron Device Letters.

[79]  Ting-Wei Tang,et al.  Discretization of flux densities in device simulations using optimum artificial diffusivity , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[80]  Kincho H. Law,et al.  AN ANALYSIS OF THE HYDRODYNAMIC SEMICONDUCTOR DEVICE MODEL — BOUNDARY CONDITIONS AND SIMULATIONS , 1995 .

[81]  Kenji Taniguchi,et al.  Moment expansion approach to calculate impact ionization rate in submicron silicon devices , 1996 .

[82]  L. Yeh Well-posedness of the hydrodynamic model for semiconductors , 1996 .

[84]  Claudio Fiegna,et al.  Electron energy distributions in silicon structures at low applied voltages and high electric fields , 1996 .

[85]  Kenji Taniguchi,et al.  Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function , 1996 .

[87]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[88]  A. Tasch,et al.  Thermionic emission model of electron gate current in submicron NMOSFETs , 1997 .

[89]  Jerry G. Fossum,et al.  Simplified energy-balance model for pragmatic multi-dimensional device simulation , 1997 .

[90]  Simulation of an AlxGa1−xAs ballistic diode using multivalley nonparabolic hydrodynamic balance equations , 1997 .

[91]  A. Benvenuti,et al.  A thermal-fully hydrodynamic model for semiconductor devices and applications to III-V HBT simulation , 1997 .

[92]  M. Ieong,et al.  Influence of hydrodynamic models on the prediction of submicrometer device characteristics , 1997 .

[93]  M. Rudan,et al.  Modeling electron and hole transport with full-band structure effects by means of the Spherical-Harmonics Expansion of the BTE , 1998 .

[94]  Zhiping Yu,et al.  Circuit/device modeling at the quantum level , 1998 .

[95]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[96]  Re-examination of the hot-carrier transport model using spherical harmonic expansion of the Boltzmann transport equation , 1998, 1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116).

[97]  Sergei S. Kucherenko,et al.  Time-Dependent Solution of a Full Hydrodynamic Model Including Convective Terms and Viscous Effect , 1998, VLSI Design.

[98]  A simplified impact ionization model based on the average energy of hot-electron subpopulation , 1998 .

[99]  Valery Axelrad Grid quality and its influence on accuracy and convergence in device simulation , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[100]  S. Selberherr,et al.  An energy relaxation time model for device simulation , 1999 .

[101]  K. Hess Advanced Theory of Semiconductor Devices , 1999 .

[102]  Advances in spherical harmonic device modeling: calibration and nanoscale electron dynamics , 1999, 1999 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD'99 (IEEE Cat. No.99TH8387).

[103]  Michael Duane,et al.  TCAD Needs and Applications from a User's Perspective , 1999 .

[104]  M. Trovato,et al.  Maximum entropy principle within a total energy scheme: Application to hot-carrier transport in semiconductors , 2000 .

[105]  S. F. Liotta,et al.  Moment equations for electrons in semiconductors: comparison of spherical harmonics and full moments , 2000 .

[106]  M. Ieong,et al.  An analytic expression of thermal diffusion coefficient for the hydrodynamic simulation of semiconductor devices , 2000, 7th International Workshop on Computational Electronics. Book of Abstracts. IWCE (Cat. No.00EX427).

[107]  H. Struchtrup Extended moment method for electrons in semiconductors , 2000 .

[108]  T. Tang,et al.  Two formulations of semiconductor transport equations based on spherical harmonic expansion of the Boltzmann transport equation , 2000 .

[109]  A. M. Anile,et al.  Hydrodynamical Modeling of Charge Carrier Transport in Semiconductors , 2000 .

[110]  J. Bude,et al.  MOSFET modeling into the ballistic regime , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[111]  M. Lundstrom,et al.  Electron transport in a model Si transistor , 2000 .

[112]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[114]  Christian A. Ringhofer,et al.  Moment Methods for the Semiconductor Boltzmann Equation on Bounded Position Domains , 2001, SIAM J. Numer. Anal..

[115]  Haitao Gan,et al.  An Analytic Expression of Thermal Diffusion Coefficient for the Hydrodynamic Simulation of Semiconductor Devices , 2001, VLSI Design.

[116]  Siegfried Selberherr,et al.  Using six moments of Boltzmann’s transport equation for device simulation , 2001 .

[117]  A new method for extracting carrier mobility from Monte Carlo device simulation , 2001 .

[118]  Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT , 2001 .

[119]  O. Muscato The Onsager reciprocity principle as a check of consistency for semiconductor carrier transport models , 2001 .

[120]  S. Selberherr,et al.  Revision of the standard hydrodynamic transport model for SOI simulation , 2002 .

[121]  S. Selberherr,et al.  Characterization of the hot electron distribution function using six moments , 2002 .

[122]  On the applicability of nonself-consistent Monte Carlo device simulations , 2002 .