Leukaemia stem cells and the evolution of cancer-stem-cell research

[1]  Derick R. Peterson,et al.  The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. , 2005, Blood.

[2]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[3]  K. Akashi,et al.  MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. , 2004, Cancer cell.

[4]  N. Goulden,et al.  Characterization of acute lymphoblastic leukemia progenitor cells. , 2004, Blood.

[5]  I. Weissman,et al.  JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells , 2004, Cell.

[6]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[7]  Elaine Fuchs,et al.  Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche , 2004, Cell.

[8]  D. Gilliland,et al.  Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. , 2004, Cancer cell.

[9]  M. Lohuizen,et al.  Stem Cells and Cancer The Polycomb Connection , 2004, Cell.

[10]  Laurie E Ailles,et al.  Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. , 2004, The New England journal of medicine.

[11]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[12]  Sally Temple,et al.  Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells , 2004, Science.

[13]  R. Henschler,et al.  Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. , 2004, Blood.

[14]  T. Rabbitts,et al.  Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. , 2004, Genes & development.

[15]  Ping Ji,et al.  Translocation Products in Acute Myeloid Leukemia Activate the Wnt Signaling Pathway in Hematopoietic Cells , 2004, Molecular and Cellular Biology.

[16]  Freddy Radtke,et al.  Notch regulation of lymphocyte development and function , 2004, Nature Immunology.

[17]  F. Schweisguth,et al.  Regulation of Notch Signaling Activity , 2004, Current Biology.

[18]  J. Aster,et al.  Multiple niches for Notch in cancer: context is everything. , 2004, Current opinion in genetics & development.

[19]  W. Hiddemann,et al.  Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  I. Weissman,et al.  Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. , 2003, Genes & development.

[21]  Michael F. Clarke,et al.  Applying the principles of stem-cell biology to cancer , 2003, Nature Reviews Cancer.

[22]  Irving L Weissman,et al.  Biology of hematopoietic stem cells and progenitors: implications for clinical application. , 2003, Annual review of immunology.

[23]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Golub,et al.  MLL-rearranged leukemias: insights from gene expression profiling. , 2003, Seminars in hematology.

[25]  K. Raj,et al.  The role of Notch in tumorigenesis: oncogene or tumour suppressor? , 2003, Nature Reviews Cancer.

[26]  L. Zon,et al.  cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes , 2003, Nature.

[27]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[28]  M. Greaves,et al.  Origins of chromosome translocations in childhood leukaemia , 2003, Nature Reviews Cancer.

[29]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[30]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[31]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[32]  J. Krosl,et al.  The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. , 2003, Immunity.

[33]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Kutok,et al.  MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. , 2003, Cancer cell.

[35]  G. van den Engh,et al.  High-speed cell sorting: fundamentals and recent advances. , 2003, Current opinion in biotechnology.

[36]  L. Allen Stem cells. , 2003, The New England journal of medicine.

[37]  D. Gilliland,et al.  Genetics of myeloid leukemias. , 2003, Annual review of genomics and human genetics.

[38]  D. Howard,et al.  Preferential induction of apoptosis for primary human leukemic stem cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Roederer,et al.  The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. , 2002, Clinical chemistry.

[40]  D. Steindler,et al.  Human cortical glial tumors contain neural stem‐like cells expressing astroglial and neuronal markers in vitro , 2002, Glia.

[41]  Irving L. Weissman,et al.  Prospective isolation of human clonogenic common myeloid progenitors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Korsmeyer,et al.  The role of MLL in hematopoiesis and leukemia , 2002, Current opinion in hematology.

[43]  Ana-Teresa Maia,et al.  In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. , 2002, Blood.

[44]  G. Sauvageau,et al.  HOXB4-Induced Expansion of Adult Hematopoietic Stem Cells Ex Vivo , 2002, Cell.

[45]  D. van der Kooy,et al.  Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. , 2002, Genes & development.

[46]  S. Nishiguchi,et al.  Polycomb Group Gene rae28 Is Required for Sustaining Activity of Hematopoietic Stem Cells , 2002, The Journal of experimental medicine.

[47]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[48]  R. Humphries,et al.  Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. , 2002, Experimental hematology.

[49]  U. Thorsteinsdóttir,et al.  marrow cells induces stem cell expansion gene in bone Hoxa 9 associated − Overexpression of the myeloid leukemia , 2001 .

[50]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[51]  M. Cleary,et al.  Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins , 2001, Oncogene.

[52]  J. Taipale,et al.  The Hedgehog and Wnt signalling pathways in cancer , 2001, Nature.

[53]  D. Kalderon,et al.  Hedgehog acts as a somatic stem cell factor in the Drosophila ovary , 2001, Nature.

[54]  J. Melo,et al.  The molecular biology of chronic myeloid leukemia. , 2000, Blood.

[55]  M. Bhatia,et al.  The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells , 2000, The Journal of experimental medicine.

[56]  I. Bernstein,et al.  Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling , 2000, Nature Medicine.

[57]  Jon C. Aster,et al.  Essential Roles for Ankyrin Repeat and Transactivation Domains in Induction of T-Cell Leukemia by Notch1 , 2000, Molecular and Cellular Biology.

[58]  C. Kappen Disruption of the homeobox gene Hoxb‐6 in mice results in increased numbers of early erythrocyte progenitors , 2000, American journal of hematology.

[59]  D. Howard,et al.  The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells , 2000, Leukemia.

[60]  H. Sutherland,et al.  Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). , 2000, Experimental hematology.

[61]  L. Girard,et al.  Two Distinct Notch1 Mutant Alleles Are Involved in the Induction of T-Cell Leukemia in c-myc Transgenic Mice , 2000, Molecular and Cellular Biology.

[62]  T. Flores,et al.  A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. , 2000, Blood.

[63]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[64]  M. Greaves,et al.  Prenatal origin of acute lymphoblastic leukaemia in children , 1999, The Lancet.

[65]  U. Thorsteinsdóttir,et al.  Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. , 1999, Blood.

[66]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[67]  I. Weissman,et al.  In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Goldman,et al.  Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). , 1999, Blood.

[69]  J. Goldman,et al.  Fusion of ETV 6 to the Caudal-Related Homeobox Gene CDX 2 in Acute Myeloid Leukemia , 1999 .

[70]  M. Scott,et al.  Control of Neuronal Precursor Proliferation in the Cerebellum by Sonic Hedgehog , 1999, Neuron.

[71]  D. Hogge,et al.  Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR-. , 1998, Blood.

[72]  T. Shows,et al.  NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. , 1998, Cancer research.

[73]  G. Smith,et al.  An entire functional mammary gland may comprise the progeny from a single cell. , 1998, Development.

[74]  J. Dick,et al.  High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. , 1998, Blood.

[75]  M. Greaves,et al.  Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A T Look,et al.  Oncogenic transcription factors in the human acute leukemias. , 1997, Science.

[77]  S. Winter,et al.  Cytogenetically aberrant cells are present in the CD34+CD33−38−19− marrow compartment in children with acute lymphoblastic leukemia , 1997, Leukemia.

[78]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[79]  P. Lansdorp,et al.  Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. , 1997, Blood.

[80]  B. Williams,et al.  Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. , 1997, Experimental hematology.

[81]  G. Sauvageau,et al.  Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. , 1997, Blood.

[82]  T. Schedl,et al.  Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. , 1997, Development.

[83]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[84]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. , 1997, Immunity.

[85]  P. Lansdorp,et al.  Self-Renewal of Stem Cells , 1998 .

[86]  David A. Williams,et al.  Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy , 1996, Nature Medicine.

[87]  J. Dick Human stem cell assays in immune‐deficient mice , 1996, Current opinion in hematology.

[88]  I. Weissman,et al.  Telomerase activity in hematopoietic cells is associated with self-renewal potential. , 1996, Immunity.

[89]  J. Dick,et al.  Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. , 1996, Blood.

[90]  Keisuke Toyama,et al.  The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9 , 1996, Nature Genetics.

[91]  S. Korsmeyer,et al.  Altered Hox expression and segmental identity in Mll-mutant mice , 1995, Nature.

[92]  W. Hiddemann,et al.  Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations , 1995 .

[93]  M. Slovak,et al.  Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia. , 1995, Blood.

[94]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. , 1995, Genes & development.

[95]  W. Hiddemann,et al.  Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. , 1995, Blood.

[96]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[97]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[98]  G. B. Pierce,et al.  Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[99]  H. Gaskins,et al.  The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[100]  S. Weiss,et al.  Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. , 1992, Science.

[101]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[102]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.

[103]  A. Perkins,et al.  Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[104]  N. Kiviat,et al.  Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor. , 1990, Pediatric pathology.

[105]  J. Dick,et al.  A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. , 1989, Science.

[106]  I. Weissman,et al.  The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. , 1988, Science.

[107]  D. Medina,et al.  A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. , 1988, Journal of cell science.

[108]  Marek Mlodzik,et al.  Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis , 1987, Cell.

[109]  J. Griffin,et al.  Clonogenic cells in acute myeloblastic leukemia. , 1986, Blood.

[110]  L. Bélanger [Differentiation and cancer]. , 1985, L'union medicale du Canada.

[111]  P. Marrack,et al.  The function of antigen-presenting cells in mice with severe combined immunodeficiency. , 1985, Journal of immunology.

[112]  J. Griffin,et al.  Heterogeneity of clonogenic cells in acute myeloblastic leukemia. , 1985, The Journal of clinical investigation.

[113]  J. Adamson,et al.  Acute nonlymphocytic leukemia: heterogeneity of stem cell origin. , 1981, Blood.

[114]  G. Faguet,et al.  Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. , 1981, Blood.

[115]  V. Najfeld,et al.  Involvement of the B-lymphoid system in chronic myelogenous leukaemia , 1980, Nature.

[116]  V. Potter Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. , 1978, British Journal of Cancer.

[117]  T. Papayannopoulou,et al.  Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. , 1977, The American journal of medicine.

[118]  A. Hamburger,et al.  Primary bioassay of human tumor stem cells. , 1977, Science.

[119]  R G Sweet,et al.  Fluorescence Activated Cell Sorting , 2020, Definitions.

[120]  E. McCulloch,et al.  Mouse myeloma tumor stem cells: a primary cell culture assay. , 1971, Journal of the National Cancer Institute.

[121]  S. Gartler,et al.  Clonal origin of chronic myelocytic leukemia in man. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[122]  W. R. Bruce,et al.  A Quantitative Assay for the Number of Murine Lymphoma Cells capable of Proliferation in vivo , 1963, Nature.

[123]  C. Southam,et al.  Quantitative studies of autotransplantation of human cancer. Preliminary report , 1961 .

[124]  J. Till,et al.  A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. , 1961, Radiation research.

[125]  C. Southam,et al.  QUANTITATIVE STUDIES OF AUTOTRANSPLANTATION OF HUMAN CANCER , 1961 .

[126]  R. Prehn,et al.  Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. , 1955, Journal of the National Cancer Institute.

[127]  A. Pappenheim PRINZIPIEN DER NEUEN MORPHOLOGISCHEN HAEMATOLOGIE NACH ZYTOGENETISCHER GRUNDLAGE , 1917 .