High performance control of a PZT scanner for fast nanoscale positioning of atomic force microscope

This paper demonstrates the design and experimental implementation of an observer based model predictive control (OMPC) with a notch filter for the positioning of the piezoelectric tube (PZT) scanner of an atomic force microscope (AFM). This control scheme achieves active damping of the resonant mode of the PZT scanner and accurate tracking of a reference triangular signal. Kalman filter is used to obtain full-state information in the presence of position sensor noise. The experimental results confirm the efficacy of the proposed controller.

[1]  Hemanshu R. Pota,et al.  Resonant controllers for smart structures , 2002 .

[2]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[3]  Hewon Jung,et al.  New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .

[4]  S. O. Reza Moheimani,et al.  Subspace-Based System Identification for an Acoustic Enclosure , 2002 .

[5]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[6]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[7]  S O Reza Moheimani,et al.  Making a commercial atomic force microscope more accurate and faster using positive position feedback control. , 2009, The Review of scientific instruments.

[8]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[9]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[10]  I. Petersen,et al.  Robust H ∞ Control in Fast Atomic Force Microscopy , 2013 .

[11]  Vincent Hayward,et al.  Phase control approach to hysteresis reduction , 2001, IEEE Trans. Control. Syst. Technol..

[12]  S. O. Reza Moheimani,et al.  High-Performance Control of Piezoelectric Tube Scanners , 2007, IEEE Transactions on Control Systems Technology.

[13]  Xiaofeng Wu,et al.  Design and implementation of Model Predictive Control algorithms for small satellite three-axis stabilization , 2011, 2011 IEEE International Conference on Information and Automation.

[14]  Hewon Jung,et al.  Tracking control of piezoelectric actuators , 2001 .

[15]  Bharath Bhikkaji,et al.  A New Scanning Method for Fast Atomic Force Microscopy , 2011, IEEE Transactions on Nanotechnology.

[16]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[17]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[18]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[19]  S. O. Reza Moheimani,et al.  Resonant control of structural vibration using charge-driven piezoelectric actuators , 2005, IEEE Transactions on Control Systems Technology.

[20]  S. O. Reza Moheimani,et al.  Tracking of Triangular References Using Signal Transformation for Control of a Novel AFM Scanner Stage , 2012, IEEE Transactions on Control Systems Technology.

[21]  S. O. Reza Moheimani,et al.  Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.