UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap.

We demonstrate superconducting nanowire single photon detectors with 76 ± 4% system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection efficiency. We propose integrating these detectors into planar surface electrode radio-frequency Paul traps for use in trapped ion quantum information processing. We operate detectors integrated into test ion trap structures at 3.8 K both with and without typical radio-frequency trapping electric fields. The trapping fields reduce system detection efficiency by 9%, but do not increase background count rates.

[1]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[2]  Peter Maunz,et al.  An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location , 2016, 1608.06923.

[3]  C. S. Pai,et al.  Scalable ion–photon quantum interface based on integrated diffractive mirrors , 2016, 1607.00100.

[4]  High-efficiency UV superconducting nanowire single-photon detectors from amorphous MoSi , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[5]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[6]  Rajeev J Ram,et al.  Integrated optical addressing of an ion qubit. , 2015, Nature nanotechnology.

[7]  Stephen Gregory Crain,et al.  Integrated System Technologies for Modular Trapped Ion Quantum Information Processing , 2016 .

[8]  Vadim Kovalyuk,et al.  Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths , 2015, Scientific Reports.

[9]  H. Zbinden,et al.  High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. , 2015, Optics express.

[10]  M. Stevens,et al.  A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout , 2015, Europe Optics + Optoelectronics.

[11]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[12]  E. Knill,et al.  Tunable spin–spin interactions and entanglement of ions in separate potential wells , 2014, Nature.

[13]  J. Alonso,et al.  Optimal electrode geometries for 2-dimensional ion arrays with bi-layer ion traps , 2014, 1406.4727.

[14]  F. Bussières,et al.  High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K , 2014, 1406.1810.

[15]  Peter Maunz,et al.  Characterization of Fluorescence Collection Optics Integrated with a Microfabricated Surface Electrode Ion Trap , 2013 .

[16]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[17]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[18]  R. Gross,et al.  On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors , 2013, Scientific Reports.

[19]  Eric A. Dauler,et al.  Readout of superconducting nanowire single-photon detectors at high count rates , 2013, 1302.2852.

[20]  D. Rosenberg,et al.  High-speed and high-efficiency superconducting nanowire single photon detector array. , 2013, Optics express.

[21]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[22]  Y. Colombe,et al.  Individual-ion addressing with microwave field gradients. , 2012, Physical review letters.

[23]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, Nature Photonics.

[24]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[25]  C. Monroe,et al.  Photon collection from a trapped ion-cavity system , 2011, 1112.4489.

[26]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature Communications.

[27]  D. Leibfried,et al.  Quantum simulation of the hexagonal Kitaev model with trapped ions , 2011, 1107.0181.

[28]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[29]  Sae Woo Nam,et al.  Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. , 2011, Optics express.

[30]  I. Chuang,et al.  Microfabricated surface ion trap on a high-finesse optical mirror. , 2010, Optics letters.

[31]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[32]  Andreas Jechow,et al.  Imaging of trapped ions with a microfabricated optic for quantum information processing. , 2010, Physical review letters.

[33]  D. Moehring,et al.  Demonstration of a microfabricated surface electrode ion trap , 2010, 1008.0990.

[34]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[35]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[36]  D. M. Lucas,et al.  Scalable simultaneous multiqubit readout with 99.99% single-shot fidelity , 2009, 0906.3304.

[37]  Sae Woo Nam,et al.  Superconducting nanowire single-photon detector in an optical cavity for front-side illumination , 2009 .

[38]  Dietrich Leibfried,et al.  Optimal surface-electrode trap lattices for quantum simulation with trapped ions. , 2009, Physical review letters.

[39]  Isaac L. Chuang,et al.  Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap , 2008, 0811.2422.

[40]  N. Timoney,et al.  Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. , 2007, Physical review letters.

[41]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[42]  E. Knill,et al.  Towards scaling up trapped ion quantum information processing , 2007 .

[43]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[44]  C. Langer,et al.  High Fidelity Quantum Information Processing with Trapped Ions , 2006 .

[45]  D. Leibfried,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[46]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[47]  O. Okunev,et al.  Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range , 2002 .

[48]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[49]  D. Leibfried INDIVIDUAL ADDRESSING AND STATE READOUT OF TRAPPED IONS UTILIZING RF MICROMOTION , 1999 .

[50]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[51]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .