Well-posedness results for triply nonlinear degenerate parabolic equations

We study well-posedness of triply nonlinear degenerate elliptic–parabolic–hyperbolic problems of the kind b(u)t −div a(u,∇φ(u))+ ψ(u) = f , u|t=0 = u0 in a bounded domain with homogeneous Dirichlet boundary conditions. The nonlinearities b,φ and ψ are supposed to be continuous non-decreasing, and the nonlinearity ˜a falls within the Leray–Lions framework. Some restrictions are imposed on the dependence of a(u,∇φ(u)) on u and also on the set where φ degenerates. A model case is a(u,∇φ(u)) = f(b(u),ψ(u),φ(u)) + k(u)a0(∇φ(u)), with a nonlinearity φ which is strictly increasing except on a locally finite number of segments, and the nonlinearity a0 which is of the Leray–Lions kind. We are interested in existence, uniqueness and stability of L∞ entropy solutions. For the parabolic–hyperbolic equation (b = Id), we obtain a general continuous dependence result on data u0, f and nonlinearities b,ψ,φ, a. Similar result is shown for the degenerate elliptic problem, which corresponds to the case of b ≡ 0 and general non-decreasing surjective ψ. Existence, uniqueness and continuous dependence on data u0, f are shown in more generality. For instance, the assumptions [b + ψ](R) = R and the continuity of φ ◦([b + ψ]^{−1}) permit to achieve the well-posedness result for bounded entropy solutions of this triply nonlinear evolution problem.

[1]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[2]  K. Karlsen,et al.  UNIQUENESS OF ENTROPY SOLUTIONS FOR DOUBLY NONLINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS , 2004 .

[3]  A. Benkirane,et al.  An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces , 1999 .

[4]  Michael G. Crandall,et al.  Nonlinear evolution equations in Banach spaces , 1972 .

[5]  D. Blanchard,et al.  Renormalized solutions for a class of nonlinear evolution problems , 1998 .

[6]  Existence of solutions for nonlinear elliptic degenerate equations , 2003 .

[7]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[8]  S. Ouaro UNIQUENESS OF ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC-PARABOLIC PROBLEMS , 2007 .

[9]  S. Ouaro Uniqueness of Entropy Solutions of Nonlinear Elliptic-Parabolic-Hyperbolic Problems in One Dimension Space , 2009 .

[10]  Hermano Frid,et al.  Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .

[11]  J. Vovelle,et al.  DIRICHLET PROBLEM FOR A DEGENERATED HYPERBOLIC-PARABOLIC EQUATION , 2022 .

[12]  Alessio Porretta,et al.  Stefan problems with nonlinear diffusion and convection , 2005 .

[13]  J. Carrillo,et al.  Scalar conservation laws with general boundary condition and continuous flux function , 2006 .

[14]  Petra Wittbold,et al.  On mild and weak solutions of elliptic-parabolic problems , 1996, Advances in Differential Equations.

[15]  ON SOME NONLINEAR ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER , 2005 .

[16]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[17]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[18]  DEGENERATE STATIONARY PROBLEMS WITH HOMOGENEOUS BOUNDARY CONDITIONS , 2008 .

[19]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[20]  B. Andreianov,et al.  Uniqueness for inhomogeneous Dirichlet problem for elliptic–parabolic equations , 2007, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  J. Carrillo,et al.  Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems , 1999 .

[22]  P. Wittbold,et al.  Existence of renormalized solutions of degenerate elliptic-parabolic problems , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  Kenneth H. Karlsen,et al.  Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations , 2004, SIAM J. Math. Anal..

[24]  J. Lions,et al.  Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .

[25]  Raimund Bürger,et al.  The initial-boundary value problem for a scalar conservation law , 1999 .

[26]  H. Hagiwara On Nonlinear Evolution Equations in Banach Spaces , 1990 .

[27]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[28]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[29]  P. Bénilan,et al.  Sur l'équation générale ut = a(., u, φ(., u)x)x + ν dans L1 : II. Le problème d'évolution , 1995 .

[30]  Anthony Michel,et al.  Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..

[31]  Norbert Hungerbühler,et al.  A refinement of Ball's theorem on Young measures. , 1997 .

[32]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[33]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[34]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[35]  T. Gallouët,et al.  ON THE CONVERGENCE OF THE PARABOLIC APPROXIMATION OF A CONSERVATION LAW IN SEVERAL SPACE DIMENSIONS , 1999 .

[36]  J. Kacur On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spaces I , 1990 .

[37]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[38]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .