Well-posedness results for triply nonlinear degenerate parabolic equations
暂无分享,去创建一个
Mostafa Bendahmane | Stanislas Ouaro | Boris Andreianov | B. Andreianov | M. Bendahmane | K. Karlsen | Kenneth K. Karlsen | S. Ouaro
[1] Corrado Mascia,et al. Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .
[2] K. Karlsen,et al. UNIQUENESS OF ENTROPY SOLUTIONS FOR DOUBLY NONLINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS , 2004 .
[3] A. Benkirane,et al. An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces , 1999 .
[4] Michael G. Crandall,et al. Nonlinear evolution equations in Banach spaces , 1972 .
[5] D. Blanchard,et al. Renormalized solutions for a class of nonlinear evolution problems , 1998 .
[6] Existence of solutions for nonlinear elliptic degenerate equations , 2003 .
[7] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[8] S. Ouaro. UNIQUENESS OF ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC-PARABOLIC PROBLEMS , 2007 .
[9] S. Ouaro. Uniqueness of Entropy Solutions of Nonlinear Elliptic-Parabolic-Hyperbolic Problems in One Dimension Space , 2009 .
[10] Hermano Frid,et al. Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .
[11] J. Vovelle,et al. DIRICHLET PROBLEM FOR A DEGENERATED HYPERBOLIC-PARABOLIC EQUATION , 2022 .
[12] Alessio Porretta,et al. Stefan problems with nonlinear diffusion and convection , 2005 .
[13] J. Carrillo,et al. Scalar conservation laws with general boundary condition and continuous flux function , 2006 .
[14] Petra Wittbold,et al. On mild and weak solutions of elliptic-parabolic problems , 1996, Advances in Differential Equations.
[15] ON SOME NONLINEAR ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER , 2005 .
[16] K. Karlsen,et al. Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.
[17] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[18] DEGENERATE STATIONARY PROBLEMS WITH HOMOGENEOUS BOUNDARY CONDITIONS , 2008 .
[19] Felix Otto,et al. L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .
[20] B. Andreianov,et al. Uniqueness for inhomogeneous Dirichlet problem for elliptic–parabolic equations , 2007, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[21] J. Carrillo,et al. Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems , 1999 .
[22] P. Wittbold,et al. Existence of renormalized solutions of degenerate elliptic-parabolic problems , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[23] Kenneth H. Karlsen,et al. Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations , 2004, SIAM J. Math. Anal..
[24] J. Lions,et al. Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .
[25] Raimund Bürger,et al. The initial-boundary value problem for a scalar conservation law , 1999 .
[26] H. Hagiwara. On Nonlinear Evolution Equations in Banach Spaces , 1990 .
[27] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[28] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[29] P. Bénilan,et al. Sur l'équation générale ut = a(., u, φ(., u)x)x + ν dans L1 : II. Le problème d'évolution , 1995 .
[30] Anthony Michel,et al. Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..
[31] Norbert Hungerbühler,et al. A refinement of Ball's theorem on Young measures. , 1997 .
[32] Stephan Luckhaus,et al. Quasilinear elliptic-parabolic differential equations , 1983 .
[33] J. Ball. A version of the fundamental theorem for young measures , 1989 .
[34] Thierry Gallouët,et al. Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.
[35] T. Gallouët,et al. ON THE CONVERGENCE OF THE PARABOLIC APPROXIMATION OF A CONSERVATION LAW IN SEVERAL SPACE DIMENSIONS , 1999 .
[36] J. Kacur. On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spaces I , 1990 .
[37] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[38] José Carrillo Menéndez. Entropy solutions for nonlinear degenerate problems , 1999 .