OPTIMUM DESIGN OF SKELETAL STRUCTURES USING METAHEURISTICS: A SURVEY OF THE STATE-OF-THE-ART

During the past decades, inherent complexity of practical structural optimization problems motivated the researchers to develop efficient and robust optimization techniques. Undoubtedly, most of the recently developed optimization algorithms for optimum design of skeletal structures belong to the class of stochastic search algorithms or metaheuristics. This study is an attempt to outline the state-of-the-art in optimum design of skeletal structures as well as today’s main concerns in this field. Some of the most recent applications of metaheuristics are summarized, and a brief conclusion of today’s trend towards the computationally enhanced techniques is provided

[1]  Fred Moses,et al.  Application of linear programming to structural system reliability , 1986 .

[2]  Mehmet Polat Saka,et al.  OPTIMUM DESIGN OF SINGLE LAYER NETWORK DOMES USING HARMONY SEARCH METHOD , 2009 .

[3]  W Prager,et al.  Optimality criteria in structural design. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Kazemzadeh Azad,et al.  STRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM , 2012 .

[5]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[6]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[7]  Carmine Pappalettere,et al.  Metaheuristic Design Optimization of Skeletal Structures: A Review , 2010 .

[8]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[9]  Mustafa Sonmez,et al.  Artificial Bee Colony algorithm for optimization of truss structures , 2011, Appl. Soft Comput..

[10]  A. Kaveh,et al.  A DISCRETE BIG BANG - BIG CRUNCH ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2010 .

[11]  Donald E. Grierson,et al.  Least‐Weight Design of Steel Frameworks Accounting for P‐Δ Effects , 1989 .

[12]  Guan-Chun Luh,et al.  Optimal design of truss-structures using particle swarm optimization , 2011 .

[13]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[14]  M. Géradin,et al.  Optimality criteria and mathematical programming in structural weight optimization , 1978 .

[15]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[16]  Siamak Talatahari,et al.  Optimal design of Schwedler and ribbed domes via hybrid Big Bang–Big Crunch algorithm , 2010 .

[17]  K ErolOsman,et al.  A new optimization method , 2006 .

[18]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[19]  Siamak Talatahari,et al.  Optimal design of skeletal structures via the charged system search algorithm , 2010 .

[20]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum bracing design of non-swaying tall plane frames , 2001 .

[21]  Mehmet Polat Saka,et al.  Optimum Design of Steel Frames using Stochastic Search Techniques Based on Natural Phenomena: A Review , 2007 .

[22]  Feng Liu,et al.  A heuristic particle swarm optimization method for truss structures with discrete variables , 2009 .

[23]  Ali Kaveh,et al.  Genetic algorithm for discrete‐sizing optimal design of trusses using the force method , 2002 .

[24]  Mustafa Sonmez,et al.  Discrete optimum design of truss structures using artificial bee colony algorithm , 2011 .

[25]  Claude Fleury,et al.  An efficient optimality criteria approach to the minimum weight design of elastic structures , 1980 .

[26]  O. Hasançebi,et al.  Comparison of non-deterministic search techniques in the optimum design of real size steel frames , 2010 .

[27]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[28]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[29]  Enrique I. Tabak,et al.  Optimality Criteria Method for Building Frames , 1981 .

[30]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[31]  A. Kaveh,et al.  An enhanced charged system search for configuration optimization using the concept of fields of forces , 2011 .

[32]  J. Arora,et al.  A study of mathematical programmingmethods for structural optimization. Part II: Numerical results , 1985 .

[33]  Ozgur Kurc,et al.  Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm , 2011 .

[34]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[35]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[36]  O. Hasançebi,et al.  Upper bound strategy for metaheuristic based design optimization of steel frames , 2013, Adv. Eng. Softw..

[37]  S. O. Degertekin,et al.  Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm , 2008 .

[38]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[39]  S. O. Degertekin,et al.  Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization , 2005 .

[40]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[41]  William Prager,et al.  A General Theory of Optimal Plastic Design , 1967 .

[42]  Solomon Tesfamariam,et al.  A survey of non-gradient optimization methods in structural engineering , 2013, Adv. Eng. Softw..

[43]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[44]  L. Berke,et al.  Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints , 1998 .

[45]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[46]  Fuat Erbatur,et al.  Optimum design of frames , 1992 .

[47]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum design of nonlinear planar steel frames with various semi- rigid connections , 2003 .

[48]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[49]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[50]  R. Gallagher,et al.  Integrated force method versus displacement method for finite element analysis , 1991 .

[51]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[52]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[53]  Mehmet Polat Saka,et al.  Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm , 2001 .

[54]  Saeid Kazemzadeh Azad,et al.  Structural optimization using artificial bee colony algorithm , 2010 .

[55]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[56]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[57]  Herbert Martins Gomes,et al.  Truss optimization with dynamic constraints using a particle swarm algorithm , 2011, Expert Syst. Appl..

[58]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[59]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[60]  Mehmet Ülker,et al.  Optimum Design of Space Trusses with Buckling Constraints by Means of Spreadsheets , 2001 .

[61]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[62]  Osman Kaan Erol,et al.  EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS , 2011 .

[63]  A Kaveh,et al.  OPTIMUM DESIGN OF STEEL SWAY FRAMES USING BIG BANGBIG CRUNCH ALGORITHM , 2011 .

[64]  Archibald N. Sherbourne,et al.  Automatic Optimal Design of Tall Steel Building Frameworks , 1995 .

[65]  Mohsin R. Khan Optimality criterion techniques applied to frames having general cross-sectional relationships , 1984 .

[66]  Siamak Talatahari,et al.  A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY METHOD FOR DISCRETE OPTIMUM DESIGN OF TRUSS STRUCTURES , 2010 .

[67]  Siamak Talatahari,et al.  A particle swarm ant colony optimization for truss structures with discrete variables , 2009 .

[68]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[69]  Zong Woo Geem,et al.  Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review , 2013 .