On the use of evolution strategies for optimising certain positive definite quadratic forms
暂无分享,去创建一个
[1] Hans-Georg Beyer,et al. Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.
[2] Hans-Georg Beyer,et al. The Steady State Behavior of ( μ / μ I , λ )-ES on Ellipsoidal Fitness Models Disturbed by Noise , 2003 .
[3] Hans-Georg Beyer,et al. Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.
[4] Hans-Georg Beyer,et al. The Steady State Behavior of (µ/µI, lambda)-ES on Ellipsoidal Fitness Models Disturbed by Noise , 2003, GECCO.
[5] Jens Jagersk. Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces , 2003 .
[6] Ingo Rechenberg,et al. Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.
[7] Jens Jägersküpper,et al. How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..
[8] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[9] Jens Jägersküpper,et al. Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.
[10] Jens Jägersküpper,et al. Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces , 2003, ICALP.
[11] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[12] N. Hansen,et al. Step-Size Adaptation Based on Non-Local Use Selection Information , 1994 .
[13] Dirk V. Arnold,et al. Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.
[14] H. Beyer,et al. Noisy Local Optimization with Evolution Strategies , 2002 .
[15] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[16] Hans-Georg Beyer,et al. The Theory of Evolution Strategies , 2001, Natural Computing Series.
[17] Nikolaus Hansen,et al. Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.