Approximating extent measures of points

We present a general technique for approximating various descriptors of the extent of a set <i>P</i> of <i>n</i> points in R<sup><i>d</i></sup> when the dimension <i>d</i> is an arbitrary fixed constant. For a given extent measure μ and a parameter ϵ > 0, it computes in time <i>O</i>(<i>n</i> + 1/ϵ<sup><i>O</i>(1)</sup>) a subset <i>Q</i> ⊆ <i>P</i> of size 1/ϵ<sup><i>O</i>(1)</sup>, with the property that (1 − ϵ)μ(<i>P</i>) ≤ μ(<i>Q</i>) ≤ μ(<i>P</i>). The specific applications of our technique include ϵ-approximation algorithms for (i) computing diameter, width, and smallest bounding box, ball, and cylinder of <i>P</i>, (ii) maintaining all the previous measures for a set of moving points, and (iii) fitting spheres and cylinders through a point set <i>P</i>. Our algorithms are considerably simpler, and faster in many cases, than previously known algorithms.

[1]  E. M. Bronshteyn,et al.  The approximation of convex sets by polyhedra , 1975 .

[2]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[4]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[5]  Andrew Chi-Chih Yao,et al.  A general approach to d-dimensional geometric queries , 1985, STOC '85.

[6]  G. Vesey Inner and Outer , 1991 .

[7]  Peter Gritzmann,et al.  Inner and outerj-radii of convex bodies in finite-dimensional normed spaces , 1992, Discret. Comput. Geom..

[8]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[9]  Jirí Matousek,et al.  On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..

[10]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1995, SIAM J. Comput..

[11]  Michael T. Goodrich,et al.  Efficient approximation and optimization algorithms for computational metrology , 1997, SODA '97.

[12]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 1997, WADS.

[13]  E. Bronshtein Metric entropy of some classes of sets , 1997 .

[14]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[15]  Leonidas J. Guibas,et al.  Data Structures for Mobile Data , 1997, J. Algorithms.

[16]  Sariel Har-Peled,et al.  Efficiently approximating the minimum-volume bounding box of a point set in three dimensions , 1999, SODA '99.

[17]  Approximation Algorithms for Minimum-Width Annuli and Shells , 2000, Discret. Comput. Geom..

[18]  Sudipto Guha,et al.  Clustering Data Streams , 2000, FOCS.

[19]  Timothy M. Chan Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus , 2000, SCG '00.

[20]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[21]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[22]  Micha Sharir,et al.  Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells , 2000, SODA '00.

[23]  Christian S. Jensen,et al.  Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD Conference.

[24]  P. Agarwal,et al.  Approximation Algorithms for Minimum-Width Annuli and Shells , 2000 .

[25]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 2001, Discret. Comput. Geom..

[26]  Sudipto Guha,et al.  Data-streams and histograms , 2001, STOC '01.

[27]  Pankaj K. Agarwal,et al.  Approximation Algorithms for k-Line Center , 2002, ESA.

[28]  Yixin Chen,et al.  Multi-Dimensional Regression Analysis of Time-Series Data Streams , 2002, VLDB.

[29]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[30]  Timothy M. Chan Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..

[31]  Pankaj K. Agarwal,et al.  STAR-Tree: An Efficient Self-Adjusting Index for Moving Objects , 2002, ALENEX.

[32]  YUNHONG ZHOU,et al.  Algorithms for a Minimum Volume Enclosing Simplex in Three Dimensions , 2002, SIAM J. Comput..

[33]  Divesh Srivastava,et al.  Reverse Nearest Neighbor Aggregates Over Data Streams , 2002, VLDB.

[34]  Kenneth L. Clarkson,et al.  Smaller core-sets for balls , 2003, SODA '03.

[35]  Joseph S. B. Mitchell,et al.  Comuting Core-Sets and Approximate Smallest Enclosing HyperSpheres in High Dimensions , 2003, ALENEX.

[36]  Pankaj K. Agarwal,et al.  Indexing Moving Points , 2003, J. Comput. Syst. Sci..

[37]  Sariel Har-Peled,et al.  Shape fitting with outliers , 2003, SCG '03.

[38]  Piyush Kumar,et al.  Approximate Minimum Volume Enclosing Ellipsoids Using Core Sets , 2003 .

[39]  Joseph S. B. Mitchell,et al.  Approximate minimum enclosing balls in high dimensions using core-sets , 2003, ACM J. Exp. Algorithmics.

[40]  Joseph O'Rourke,et al.  Finding minimal enclosing boxes , 1985, International Journal of Computer & Information Sciences.

[41]  Mark Tatham,et al.  The General Approach , 2006 .