This is Printer Multifractal Processes

This paper has two main objectives. First, it develops the multifractal formalism in a context suitable for both, measures and functions, deterministic as well as random, thereby emphasizing an intuitive approach. Second, it carefully discusses several examples, such as the binomial cascades and self-similar processes with a special eye on the use of wavelets. Particular attention is given to a novel class of multifractal processes which combine the attractive features of cascades and self-similar processes. Statistical properties of estimators as well as modelling issues are addressed. AMS Subject classification: Primary 28A80; secondary 37F40.

[1]  Richard G. Baraniuk,et al.  Multiscale queuing analysis of long-range-dependent network traffic , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[2]  James A. Yorke,et al.  Is the dimension of chaotic attractors invariant under coordinate changes? , 1984 .

[3]  Christian Beck,et al.  Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals , 1990 .

[4]  Carl J. G. Evertsz,et al.  Fractal Geometry of Financial Time Series , 1995 .

[5]  Rudolf H. Riedi,et al.  An Improved Multifractal Formalism and Self Similar Measures , 1995 .

[6]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[7]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[8]  G. Michon,et al.  On the multifractal analysis of measures , 1992 .

[9]  L. Olsen,et al.  Random Geometrically Graph Directed Self-Similar Multifractals , 1994 .

[10]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[11]  G. M. Molchan,et al.  Turbulent cascades: Limitations and a statistical test of the lognormal hypothesis , 1997 .

[12]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[13]  Ka-Sing Lau,et al.  Multifractal Measures and a Weak Separation Condition , 1999 .

[14]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[15]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[16]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[17]  R. Dudley,et al.  On the Lower Tail of Gaussian Seminorms , 1979 .

[18]  Rudolf H. Riedi,et al.  Multifractals and wavelets: A potential tool in geophysics , 1998 .

[19]  G. Eyink Besov spaces and the multifractal hypothesis , 1995 .

[20]  Stéphane Jaffard,et al.  On the Frisch–Parisi conjecture , 2000 .

[21]  Douglas P. Hardin,et al.  An exact formula for the measure dimensions associated with a class of piecewise linear maps , 1989 .

[22]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[23]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[24]  Benoit B. Mandelbrot,et al.  Negative fractal dimensions and multifractals , 1990 .

[25]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[26]  D. Veitch,et al.  Infinitely divisible cascade analysis of network traffic data , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[27]  Jensen,et al.  Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism. , 1989, Physical review. A, General physics.

[28]  Benoit B. Mandelbrot,et al.  Multifractal measures, especially for the geophysicist , 1989 .

[29]  K. Falconer,et al.  Vector-valued multifractal measures , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  J. L. Véhel,et al.  Multifractal Analysis of Choquet Capacities : Preliminary Results , 1995 .

[31]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[32]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[33]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[34]  D. Sornette,et al.  Multifractal returns and hierarchical portfolio theory , 2000, cond-mat/0008069.

[35]  Yimin Xiao Hausdorff measure of the graph of fractional Brownian motion , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  H. Weiss,et al.  A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions , 1997 .

[37]  F. Herrmann Evidence of scaling for acoustic waves in multiscale media and its possible implications , 1998 .

[38]  J. Cole Relative multifractal analysis , 2000 .

[39]  A. Dembo,et al.  Thick points for spatial Brownian motion: multifractal analysis of occupation measure , 2000 .

[40]  Anja Feldmann,et al.  Data networks as cascades: investigating the multifractal nature of Internet WAN traffic , 1998, SIGCOMM '98.

[41]  Rudolf H. Riedi,et al.  Conditional and Relative Multifractal Spectra , 1997 .

[42]  C.-C. Jay Kuo,et al.  Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis , 1993, IEEE Trans. Signal Process..

[43]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[44]  Pierre Collet,et al.  The dimension spectrum of some dynamical systems , 1987 .

[45]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[46]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[47]  B. Mandelbrot Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .

[48]  R. Mauldin,et al.  Multifractal decompositions of Moran fractals , 1992 .

[49]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[50]  Rudolf H. Riedi,et al.  Wavelet analysis of fractional Brownian motion in multifractal time , 1999 .

[51]  Tamás Vicsek,et al.  Geometrical multifractality of growing structures , 1987 .

[52]  Benoit B. Mandelbrot,et al.  Scaling in financial prices: II. Multifractals and the star equation , 2001 .

[53]  P. Gonçalves,et al.  Existence test of moments: Application to Multifractal Analysis , 2000 .

[54]  A Turiel,et al.  Multifractal wavelet filter of natural images. , 2000, Physical review letters.

[55]  Ilkka Norros,et al.  A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..

[56]  Patrice Abry,et al.  Stochastic integral representation and properties of the wavelet coefficients of linear fractional stable motion , 2000 .

[57]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[58]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[59]  Rudolf H. Riedi,et al.  Multifractal Properties of TCP Traffic: a Numerical Study , 1997 .

[60]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[61]  Rudolf H. Riedi,et al.  Inverse Measures, the Inversion Formula, and Discontinuous Multifractals , 1997 .

[62]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[63]  W. Willinger,et al.  Toward an Improved Understanding of Network Traffic Dynamics , 2000 .

[64]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[65]  Peter Grassberger,et al.  Generalizations of the Hausdorff dimension of fractal measures , 1985 .

[66]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Elmer S. West From the U. S. A. , 1965 .

[68]  Rudolf H. Riedi,et al.  Exceptions to the multifractal formalism for discontinuous measures , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[69]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[70]  Yimin Xiao Hausdorff measure of the sample paths of Gaussian random fields , 1996 .

[71]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[72]  R. Riedi,et al.  Origin of Fractal Branching Complexity in the Lung , 2000 .

[73]  Emmanuel Bacry,et al.  Random cascades on wavelet dyadic trees , 1998 .

[74]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[75]  T. Tél Fractals, Multifractals, and Thermodynamics , 1988 .

[76]  R. Ellis,et al.  LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .

[77]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[78]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[79]  J. L. Véhel,et al.  Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .

[80]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[81]  R. Baraniuk,et al.  A simple statistical analysis of wavelet-based multifractal spectrum estimation , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[82]  Local Regularity of Nonsmooth Wavelet Expansions and Application to the Polya Function , 1996 .

[83]  Rudolf H. Riedi,et al.  Numerical Estimates of Generalized Dimensions D_q for Negative q , 1996 .

[84]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[85]  C. D. Cutler The Hausdorff Dimension Distribution of Finite Measures in Euclidean Space , 1986, Canadian Journal of Mathematics.

[86]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[87]  Kenneth Falconer,et al.  The multifractal spectrum of statistically self-similar measures , 1994 .