Markov Processes : A Compositional Perspective on Non-Equilibrium Steady States in Biology

In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illustrate these concepts.

[1]  Göran Lindblad,et al.  Non-equilibrium entropy and irreversibility , 1983 .

[2]  John C. Baez,et al.  Relative Entropy in Biological Systems , 2015, Entropy.

[3]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[4]  Rolf Landauer,et al.  Inadequacy of entropy and entropy derivatives in characterizing the steady state , 1975 .

[5]  T. L. Hill,et al.  Free Energy Transduction in Biology: The Steady-State Kinetic and Thermodynamic Formalism , 1977 .

[6]  J. Schnakenberg,et al.  Thermodynamic network analysis of biological systems , 1977 .

[7]  Hong Qian,et al.  Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. , 2006, The journal of physical chemistry. B.

[8]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[9]  Brendan Fong,et al.  A Compositional Framework for Passive Linear Networks , 2015, 1504.05625.

[10]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[11]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[12]  J. Kingman Markov population processes , 1969, Journal of Applied Probability.

[13]  Brendan Fong,et al.  A compositional framework for Markov processes , 2015, 1508.06448.

[14]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[15]  Hong Qian,et al.  The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks , 2010, International journal of molecular sciences.

[16]  Minping Qian,et al.  Mathematical Theory of Nonequilibrium Steady States , 2004 .

[17]  Brendan Fong,et al.  Decorated Cospans , 2015, 1502.00872.

[18]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[19]  George Oster,et al.  Chemical reaction networks , 1974, Applications of Polynomial Systems.

[20]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[21]  R. Landauer Stability and entropy production in electrical circuits , 1975 .

[22]  Blake S. Pollard A Second Law for Open Markov Processes , 2016, Open Syst. Inf. Dyn..

[23]  T. L. Hill,et al.  Muscle contraction and free energy transduction in biological systems. , 1985, Science.

[24]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[25]  M. Bellac,et al.  Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).

[26]  Stijn Bruers,et al.  On the Validity of Entropy Production Principles for Linear Electrical Circuits , 2007 .

[27]  Ludwig von Bertalanffy,et al.  Ètude thermodynamique des phénomènes irréversibles , 1949, Nature.

[28]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[29]  J. Schnakenberg Network theory of microscopic and macroscopic behavior of master equation systems , 1976 .

[30]  D. Andrieux,et al.  Fluctuation Theorem for Currents and Schnakenberg Network Theory , 2005, cond-mat/0512254.