Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development.

[1]  Raymond J. Deshaies,et al.  Multisite Phosphorylation and the Countdown to S Phase , 2001, Cell.

[2]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[3]  E L Ferguson,et al.  The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. , 2001, Developmental cell.

[4]  C. Niehrs The Spemann organizer and embryonic head induction , 2001, The EMBO journal.

[5]  M. Oelgeschläger,et al.  The establishment of spemann's organizer and patterning of the vertebrate embryo , 2000, Nature Reviews Genetics.

[6]  A. Ciechanover,et al.  The ubiquitin system , 2000, Nature Medicine.

[7]  M. Kirschner,et al.  Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. , 2000, Molecular cell.

[8]  J. Smith,et al.  DNA-binding specificity and embryological function of Xom (Xvent-2). , 1999, Developmental biology.

[9]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[10]  C. Larabell,et al.  Establishment of the Dorsal–Ventral Axis inXenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation , 1999, The Journal of cell biology.

[11]  M. Kirschner,et al.  Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. , 1999, Science.

[12]  Bruce A. Yankner,et al.  β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation , 1999 .

[13]  M. Hochstrasser,et al.  Substrate Targeting in the Ubiquitin System , 1999, Cell.

[14]  M. Kitagawa,et al.  An F‐box protein, FWD1, mediates ubiquitin‐dependent proteolysis of β‐catenin , 1999, The EMBO journal.

[15]  T. Maniatis,et al.  A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. , 1999, Genes & development.

[16]  Stephen J. Elledge,et al.  The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro , 1999 .

[17]  M. Mann,et al.  Identification of the receptor component of the IκBα–ubiquitin ligase , 1998, Nature.

[18]  Ebrahim Zandi,et al.  Direct Phosphorylation of IκB by IKKα and IKKβ: Discrimination Between Free and NF-κB-Bound Substrate , 1998 .

[19]  M. Kirschner,et al.  Geminin, an Inhibitor of DNA Replication, Is Degraded during Mitosis , 1998, Cell.

[20]  C. Niehrs,et al.  Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. , 1998, Development.

[21]  R. Goodman,et al.  Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Thomas,et al.  A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. , 1998, Molecular cell.

[23]  R. Moon,et al.  BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm , 1998, Mechanisms of Development.

[24]  G. Struhl,et al.  Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb , 1998, Nature.

[25]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[26]  M. A. Jabbar,et al.  Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. , 1997, Virology.

[27]  M. Kirschner,et al.  Systematic identification of mitotic phosphoproteins , 1997, Current Biology.

[28]  J. Graff,et al.  Embryonic Patterning: To BMP or Not to BMP, That Is the Question , 1997, Cell.

[29]  C. Larabell,et al.  Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway , 1997, The Journal of cell biology.

[30]  C. Niehrs,et al.  The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm , 1996 .

[31]  D. Melton,et al.  A molecular mechanism for the effect of lithium on development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Smith,et al.  Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. , 1996, Development.

[33]  R. Moon,et al.  The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. , 1996, Genes & development.

[34]  G. von Dassow,et al.  Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. , 1996, Development.

[35]  C. Wittenberg,et al.  Rapid Degradation of the G1 Cyclin Cln2 Induced by CDK-Dependent Phosphorylation , 1996, Science.

[36]  J. Howe,et al.  A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. Papalopulu,et al.  A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. , 1996, Developmental biology.

[38]  T. Watabe,et al.  Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. , 1995, Genes & development.

[39]  R F Standaert,et al.  Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin , 1995, Science.

[40]  M. Kirschner,et al.  A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B , 1995, Cell.

[41]  B. Futcher,et al.  p34Cdc28-mediated control of Cln3 cyclin degradation , 1995, Molecular and cellular biology.

[42]  J. Graff,et al.  Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo , 1994, Cell.

[43]  E. Wingender,et al.  The Human Immunodeficiency Virus Type 1 Encoded Vpu Protein is Phosphorylated by Casein Kinase-2 (CK-2) at Positions Ser52 and Ser56 within a Predicted α-Helix-Turn-α-Helix-Motif , 1994 .

[44]  K. Kao,et al.  The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. , 1988, Developmental biology.

[45]  M. Kirschner,et al.  A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage , 1982, Cell.

[46]  J. Peters,et al.  Ubiquitin and the Biology of the Cell , 1998, Springer US.

[47]  L. Zon,et al.  Small pool expression screening: identification of genes involved in cell cycle control, apoptosis, and early development. , 1997, Methods in enzymology.

[48]  J. Gerhart,et al.  Formation and function of Spemann's organizer. , 1997, Annual review of cell and developmental biology.

[49]  M. Hochstrasser Ubiquitin-dependent protein degradation. , 1996, Annual review of genetics.

[50]  J. Faber,et al.  Normal table of Xenopus laevis. , 1994 .

[51]  A. Murray,et al.  Cell cycle extracts. , 1991, Methods in cell biology.

[52]  Andrew W. Murray,et al.  Chapter 30 Cell Cycle Extracts , 1991 .

[53]  P. Bohley,et al.  Chapter 6 Intracellular proteolysis , 1987 .