Nanomaterial-based amplified transduction of biomolecular interactions.

This article reviews progress in the development of nanomaterials for amplified biosensing and discusses different nanomaterial-based bioamplification strategies. Signal amplification has attracted considerable attention for ultrasensitive detection of disease markers and biothreat agents. The emergence of nanotechnology is opening new horizons for highly sensitive bioaffinity and biocatalytic assays and for novel biosensor protocols that employ electronic, optical, or microgravimetric signal transduction. Nucleic acids and antibodies functionalized with metal or semiconductor nanoparticles have been employed as amplifying tags for the detection of DNA and proteins. The coupling of different nanomaterial-based amplification platforms and amplification processes dramatically enhances the intensity of the analytical signal and leads to ultrasensitive bioassays. The successful realization of the new nanoparticle-based signal amplification strategies requires proper attention to nonspecific adsorption issues. The implications of such nanoscale materials on amplified biodetection protocols and on the development of modern biosensors are discussed.

[1]  C. Niemeyer,et al.  Sensitive detection of proteins using difunctional DNA-gold nanoparticles. , 2005, Small.

[2]  T. Krauss,et al.  Detection of single bacterial pathogens with semiconductor quantum dots. , 2005, Analytical chemistry.

[3]  Guodong Liu,et al.  Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. , 2005, Analytical chemistry.

[4]  Hua Cui,et al.  Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. , 2005, Analytical chemistry.

[5]  Reinhard Renneberg,et al.  Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. , 2005, Analytical chemistry.

[6]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[7]  Itamar Willner,et al.  Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. , 2005, Nano letters.

[8]  C. Mirkin,et al.  Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Itamar Willner,et al.  Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. , 2005, Analytical chemistry.

[10]  I. Willner,et al.  Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. , 2005, Small.

[11]  Juhyoun Kwak,et al.  Electrochemical detection of DNA hybridization using biometallization. , 2005, Analytical chemistry.

[12]  Itamar Willner,et al.  Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. , 2005, Nano letters.

[13]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[14]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[15]  A. Bard,et al.  Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. , 2004, Analytical chemistry.

[16]  Lisa R. Hilliard,et al.  A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[18]  A. Bard,et al.  Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. , 2004, Analytical chemistry.

[19]  Zhi‐Feng Zhang,et al.  Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. , 2004, Analytical chemistry.

[20]  Edgar Diessel,et al.  Online resistance monitoring during autometallographic enhancement of colloidal Au labels for DNA analysis. , 2004, Biosensors & bioelectronics.

[21]  Chad A Mirkin,et al.  Bio-bar-code-based DNA detection with PCR-like sensitivity. , 2004, Journal of the American Chemical Society.

[22]  Guodong Liu,et al.  DNA-based amplified bioelectronic detection and coding of proteins. , 2004, Angewandte Chemie.

[23]  Joseph Wang,et al.  Amplified Electrical Transduction of DNA Hybridization Based on Polymeric Beads Loaded with Multiple Gold Nanoparticle Tags , 2004 .

[24]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[25]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[26]  Joseph Wang,et al.  Indium microrod tags for electrochemical detection of DNA hybridization. , 2003, Analytical chemistry.

[27]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[28]  Weihong Tan,et al.  Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. , 2003, Journal of the American Chemical Society.

[29]  W. Fritzsche,et al.  A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array , 2003 .

[30]  Kathryn L. Turner,et al.  “Electroactive Beads” for Ultrasensitive DNA Detection , 2003 .

[31]  Ronen Polsky,et al.  Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster , 2003 .

[32]  Wenjun Yang,et al.  Nanoencapsulated microcrystalline particles for superamplified biochemical assays. , 2002, Analytical chemistry.

[33]  P. He,et al.  Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label , 2002 .

[34]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[35]  I. Willner,et al.  Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. , 2002, Talanta.

[36]  Ronen Polsky,et al.  Magnetically-induced solid-state electrochemical detection of DNA hybridization. , 2002, Journal of the American Chemical Society.

[37]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[38]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[39]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[40]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[41]  Joseph Wang,et al.  Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization , 2001 .

[42]  L. Authier,et al.  Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. , 2001, Analytical chemistry.

[43]  W. Fritzsche,et al.  Electrical Classification of the Concentration of Bioconjugated Metal Colloids after Surface Adsorption and Silver Enhancement , 2001 .

[44]  B. Limoges,et al.  An electrochemical metalloimmunoassay based on a colloidal gold label. , 2000, Analytical chemistry.

[45]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[46]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[47]  Itamar Willner,et al.  Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles , 2000 .

[48]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[49]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[50]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.