Controlling of spatial modes in multi-mode photonic crystal nanobeam cavity.

We numerically and experimentally present the characteristics of disturbed spatial modes (air mode and dielectric mode) in multi-mode photonic crystal nanobeam cavity (PCNC) in the mid-infrared wavelength range. The results show that the resonance wavelength of the spatial modes can be controlled by modifying the size, period and position of the central periodical mirrors in PCNC, achieving better utilization of the spectrum resource. Additionally, side coupling characteristics of PCNC supporting both air and dielectric modes are investigated for the first time. This work serves as a proof of design method that the spatial modes can be controlled flexibly in PCNC, paving the way to achieve integrated multi-function devices in a limited spectrum range.