Generalized qd algorithm for block band matrices
暂无分享,去创建一个
[1] A. Draux,et al. Markov-Bernstein inequalities for generalized Gegenbauer weight , 2011 .
[2] A. Draux,et al. qd block algorithm , 2010 .
[3] Mohamed Sadik,et al. Generalized qd algorithm and Markov–Bernstein inequalities for Jacobi weight , 2009, Numerical Algorithms.
[4] Alfio Quarteroni,et al. Numerical Mathematics (Texts in Applied Mathematics) , 2006 .
[5] André Draux,et al. Improvement of the formal and numerical estimation of the constant in some Markov-Bernstein inequalities , 2000, Numerical Algorithms.
[6] P. Maroni. Semi-classical character and finite-type relations between polynomial sequences , 1999 .
[7] A. Draux,et al. On the positivity of some bilinear functionals in Sobolev spaces , 1999 .
[8] A. Aptekarev,et al. Multiple orthogonal polynomials , 1998 .
[9] A. Ronveaux,et al. On a system of “classical” polynomials of simultaneous orthogonality , 1996 .
[10] P. Maroni,et al. A characterization of “classical” d -orthogonal polynomials , 1995 .
[11] Gradimir V. Milovanovic,et al. Topics in polynomials - extremal problems, inequalities, zeros , 1994 .
[12] A. Maroni. A characterization of strictly 1/ p orthogonal Scheffer-type polynomials. Study of case p =2 , 1988 .
[13] J. V. Iseghem. Vector orthogonal relations. Vector QD-algorithm , 1987 .
[14] D. H. Griffel,et al. An Introduction to Orthogonal Polynomials , 1979 .
[15] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[16] James Hardy Wilkinson,et al. Convergence of the LR, QR, and Related Algorithms , 1965, Comput. J..
[17] C. Andersen. The QD-algorithm as a method for finding the roots of a polynomial equation when all roots are positive , 1964 .
[18] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[19] E. Schmidt,et al. Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum , 1944 .
[20] Antonio J. Durán,et al. ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .
[21] Ammar Boukhemis. Une caract?risation des polyn?mes strictement 1/p orthogomnaux de type Scheffer ttude du cas p = 2 , 1988 .
[22] 高等学校計算数学学報編輯委員会編,et al. 高等学校計算数学学報 = Numerical mathematics , 1979 .
[23] James Hardy Wilkinson,et al. The calculation of Lamé polynomials , 1965, Comput. J..