Generalized qd algorithm for block band matrices

[1]  A. Draux,et al.  Markov-Bernstein inequalities for generalized Gegenbauer weight , 2011 .

[2]  A. Draux,et al.  qd block algorithm , 2010 .

[3]  Mohamed Sadik,et al.  Generalized qd algorithm and Markov–Bernstein inequalities for Jacobi weight , 2009, Numerical Algorithms.

[4]  Alfio Quarteroni,et al.  Numerical Mathematics (Texts in Applied Mathematics) , 2006 .

[5]  André Draux,et al.  Improvement of the formal and numerical estimation of the constant in some Markov-Bernstein inequalities , 2000, Numerical Algorithms.

[6]  P. Maroni Semi-classical character and finite-type relations between polynomial sequences , 1999 .

[7]  A. Draux,et al.  On the positivity of some bilinear functionals in Sobolev spaces , 1999 .

[8]  A. Aptekarev,et al.  Multiple orthogonal polynomials , 1998 .

[9]  A. Ronveaux,et al.  On a system of “classical” polynomials of simultaneous orthogonality , 1996 .

[10]  P. Maroni,et al.  A characterization of “classical” d -orthogonal polynomials , 1995 .

[11]  Gradimir V. Milovanovic,et al.  Topics in polynomials - extremal problems, inequalities, zeros , 1994 .

[12]  A. Maroni A characterization of strictly 1/ p orthogonal Scheffer-type polynomials. Study of case p =2 , 1988 .

[13]  J. V. Iseghem Vector orthogonal relations. Vector QD-algorithm , 1987 .

[14]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[15]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[16]  James Hardy Wilkinson,et al.  Convergence of the LR, QR, and Related Algorithms , 1965, Comput. J..

[17]  C. Andersen The QD-algorithm as a method for finding the roots of a polynomial equation when all roots are positive , 1964 .

[18]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[19]  E. Schmidt,et al.  Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum , 1944 .

[20]  Antonio J. Durán,et al.  ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .

[21]  Ammar Boukhemis Une caract?risation des polyn?mes strictement 1/p orthogomnaux de type Scheffer ttude du cas p = 2 , 1988 .

[22]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[23]  James Hardy Wilkinson,et al.  The calculation of Lamé polynomials , 1965, Comput. J..