Fast Discrete Curvelet Transforms
暂无分享,去创建一个
Laurent Demanet | Lexing Ying | Emmanuel J. Candès | David L. Donoho | E. Candès | D. Donoho | L. Demanet | Lexing Ying
[1] Emmanuel J. Candès,et al. New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..
[2] David L. Donoho,et al. Digital curvelet transform: strategy, implementation, and experiments , 2000, SPIE Defense + Commercial Sensing.
[3] Wang-Q Lim,et al. Wavelets with composite dilations , 2004 .
[4] Chris Anderson,et al. Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..
[5] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[6] D. J. Verschuur,et al. Separation of Primaries and Multiples by Non-Linear Estimation in the Curvelet Domain , 2004, 66th EAGE Conference & Exhibition.
[7] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[8] Stéphane Mallat,et al. Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.
[9] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[10] Felix J. Herrmann,et al. Sparseness‐ and continuity‐constrained seismic imaging , 2005 .
[11] N. Aghanim,et al. Detection and discrimination of cosmological non-Gaussian signatures by multi-scale methods , 2003, astro-ph/0311577.
[12] D. Donoho,et al. Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .
[13] E. Candès,et al. Curvelets and Fourier Integral Operators , 2003 .
[14] E. Candès,et al. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .
[15] E. Candès. Harmonic Analysis of Neural Networks , 1999 .
[16] M. Do. Directional multiresolution image representations , 2002 .
[17] Huub Douma,et al. Wave-character Preserving Pre-stack Map Migration Using Curvelets , 2004 .
[18] Wang-Q Lim,et al. Wavelets with composite dilations and their MRA properties , 2006 .
[19] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[20] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[21] E. Candès,et al. Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .
[22] Eero P. Simoncelli. Shiftable multi-scale transforms [or "What's wrong with orthonormal wavelets"] , 1992 .
[23] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[24] A. G. Flesia,et al. Digital Implementation of Ridgelet Packets , 2003 .
[25] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[26] P. Heywood. Trigonometric Series , 1968, Nature.
[27] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[28] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[29] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[30] A. Duijndam,et al. Nonuniform Fast Fourier Transform , 1997 .
[31] D. Donoho. Wedgelets: nearly minimax estimation of edges , 1999 .
[32] Xiaoming Huo,et al. Beamlets and Multiscale Image Analysis , 2002 .
[33] F. Herrmann,et al. Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .
[34] William T. Freeman,et al. Presented at: 2nd Annual IEEE International Conference on Image , 1995 .
[35] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[36] Pierre Vandergheynst,et al. Directional dyadic wavelet transforms: design and algorithms , 2002, IEEE Trans. Image Process..
[37] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[38] V. Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data, II , 1995 .
[39] G. Strang. A proposal for toeplitz matrix calculations , 1986 .