EIT Oedometer : An Advanced Cell to Monitor Spatial and Time Variability in Soil with Electrical and Seismic Measurements

The paper presents an innovative oedometer cell (EIT oedometer), accomplishing for monitoring the spatial and temporal evolution of different physical quantities inside soil samples through seismic and electric non-destructive measurements. The technical solutions implemented to perform correct electrical measurements are reported together with the results of benchmark tests demonstrating the potentialities and the limits of the 3D electrical resistivity tomography in detecting both pre-existing and induced sample heterogeneities. It is shown that resistivity imaging can offer a powerful tool for the investigation of soil heterogeneities not detected by external measurements. The relationship between electrical resistivity and soil properties makes this application potentially useful for monitoring the evolution of transient processes as for instance those related to the diffusion of chemical species in clay soils and associated coupled chemo-mechanical processes, whereas the information gathered by classical oedometer measurements and by seismic waves propagation could be used to explore the associated macroscopic phenomena.

[1]  J. Santamarina,et al.  Changes in dielectric permittivity and shear wave velocity during concentration diffusion , 1995 .

[2]  Jong-Sub Lee,et al.  Bender Elements: Performance and Signal Interpretation , 2005 .

[3]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[4]  Biwen Xu,et al.  Archaeological investigation by electrical resistivity tomography: a preliminary study , 1991 .

[5]  Takeshi Katsumi,et al.  Measuring the k-S-p relations on DNAPLs migration , 2003 .

[6]  A. E. Bussian Electrical conductance in a porous medium , 1983 .

[7]  Sunao Kunimatsu,et al.  Visualization technique for liquefaction process in chamber experiments by using electrical resistivity monitoring , 2007 .

[8]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[9]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[10]  Trevor York,et al.  3D electrical tomographic imaging using vertical arrays of electrodes , 2006 .

[11]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[12]  Luigi Sambuelli,et al.  FIRST EXPERIMENTS ON SOLID TRANSPORT ESTIMATION IN RIVER-FLOW BY FAST IMPEDANCE TOMOGRAPHY , 2002 .

[13]  Wlodek Tych,et al.  Characterizing solute transport in undisturbed soil cores using electrical and X-ray tomographic methods , 1999 .

[14]  Cesare Comina,et al.  IMAGING HETEROGENEITIES AND DIFFUSION IN SAND SAMPLES , 2005 .

[15]  Andrea Borsic,et al.  Regularisation methods for imaging from electrical measurements. , 2002 .

[16]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[17]  Alex L. MacKay,et al.  THE USE OF NUCLEAR MAGNETIC RESONANCE FOR STUDYING AND DETECTING HYDROCARBON CONTAMINANTS IN POROUS ROCKS , 1993 .

[18]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[19]  Staf Roels,et al.  The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture , 2005 .

[20]  Giovanni Nicolotti,et al.  Ultrasonic, electric and radar measurements for living trees assessment , 2003 .

[21]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[22]  A. Binley,et al.  Flow pathways in porous media: electrical resistance tomography and dye staining image verification , 1996 .

[23]  S. Clark,et al.  Handbook of physical constants , 1966 .

[24]  Antonio Gens,et al.  DEVELOPMENT OF A NEW SUCTION AND TEMPERATURE CONTROLLED OEDOMETER CELL , 1995 .

[25]  Pham Duc Chinh,et al.  Electrical properties of sedimentary rocks having interconnected water‐saturated pore spaces , 2000 .

[26]  K. Stokoe,et al.  Measurement of Shear Waves in Laboratory Specimens by Means of Piezoelectric Transducers , 1996 .

[27]  Shmulik P. Friedman,et al.  Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil , 1991 .

[28]  R. L. Peyton,et al.  Applying X-ray CT to measure macropore diameters in undisturbed soil cores , 1992 .

[29]  William John McCarter,et al.  Monitoring sedimentation of a clay slurry , 2001 .

[30]  Gioacchino Viggiani,et al.  Advances in X-ray Tomography for Geomaterials , 2006 .

[31]  Antonio Gens,et al.  A framework for the behaviour of unsaturated expansive clays , 1992 .

[32]  John M. Reynolds,et al.  An Introduction to Applied and Environmental Geophysics , 1997 .

[33]  Matthew Richard Coop,et al.  Objective criteria for determining G(max) from bender element tests , 1996 .

[34]  Hans—Olaf Pfannkuch,et al.  On the Correlation of Electrical Conductivity Properties of Porous Systems with Viscous Flow Transport Coefficients , 1972 .

[35]  L. M. Suárez Del Río,et al.  Consolidants Influence on Sandstone Capillarity. X‐ray CT Study , 2010 .

[36]  Keith Richards,et al.  Spatial and temporal mapping of water in soil by magnetic resonance imaging , 1993 .

[37]  William John McCarter,et al.  Soil characterization using electrical measurements , 1997 .

[38]  Cesare Comina,et al.  Imaging heterogeneities with electrical impedance tomography: laboratory results , 2005 .

[39]  R. L. Peyton,et al.  Influence of aggregate size on solute transport as measured using computed tomography , 1992 .

[40]  J. P. Riley,et al.  Handbook of physical constants , 1967 .