Economics, environment, and energy life cycle assessment of automobiles fueled by bio-ethanol blends in China

This study examines the life cycle economics, environment impacts, and energy consumptions of Chinese automobiles fueled by bio-ethanol blends, utilizing life cycle assessment (LCA) techniques, and puts forward C, Env, En, EEE indicators to assess the economics, combined environmental impacts, energy consumption, and the balance of the three, as a means to evaluate whether the energy utilization efficiency and the domestic environment improvement are achieved at the lowest cost possible. A generic gasoline fueled car is used as a baseline case, and the cassava-based E85 fueled FFV in Guangxi is used as a case study. On the life cycle basis, the cost of cassava-based E85 fueled FFV is about 15% higher than that of gasoline fueled car, of which the two key factors are the price of cassava and gasoline, through a cost breakdown analysis. It also has lower life-cycle emissions of CO2, CO, HC, and PM pollutants, higher NOX emissions, while about 20% combined environment indicator is lower than that of the gasoline fueled car. And, it is higher in total energy consumption, lower in fossil fuels and petroleum consumptions, and has a better combined energy indicator. Lastly, the EEE indicator of the cassava-based E85 fueled FFV is about 29% less than that of the gasoline fueled car. Hence, E85 fueled FFV is a better vehicle than the gasoline fueled car, taking the balance of all the 3 “E”s, the energy, environmental and economical aspects, into considerations.