Tuneable Transient Thermogels Mediated by a pH- and Redox-Regulated Supramolecular Polymerization.

A multistimuli-responsive transient supramolecular polymerization of β-sheet-encoded dendritic peptide monomers in water is presented. The amphiphiles, which contain glutamic acid and methionine, undergo a glucose oxidase catalyzed, glucose-fueled transient hydrogelation in response to an interplay of pH and oxidation stimuli, promoted by the production of reactive oxygen species (ROS). Adjusting the enzyme and glucose concentration allows tuning of the assembly and the disassembly rates of the supramolecular polymers, which dictate the stiffness and transient stability of the hydrogels. The incorporation of triethylene glycol chains introduces thermoresponsive properties to the materials. We further show that repair enzymes are able to reverse the oxidative damage in the methionine-based thioether side chains. Since ROS play an important role in signal transduction cascades, our strategy offers great potential for applications of these dynamic biomaterials in redox microenvironments.

[1]  H. Ringsdorf,et al.  Pharmakologisch aktive polymere, 4. Monomere und polymere alkylsulfinyl‐alkylacrylate und ‐methacrylate als mögliche resorptionsvermittler , 1973 .

[2]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[3]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[4]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[5]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[6]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[7]  Jeffrey A Hubbell,et al.  Glucose-oxidase based self-destructing polymeric vesicles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[8]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[9]  Jean-François Lutz,et al.  Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? , 2006, Journal of the American Chemical Society.

[10]  Paul Sanderson,et al.  A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators , 2009 .

[11]  L. Ananthanarayan,et al.  Glucose oxidase--an overview. , 2009, Biotechnology advances.

[12]  Boris Rybtchinski,et al.  Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. , 2009, Journal of the American Chemical Society.

[13]  Job Boekhoven,et al.  Dissipative self-assembly of a molecular gelator by using a chemical fuel. , 2010, Angewandte Chemie.

[14]  G. Newkome,et al.  Dendrimers derived from 1 → 3 branching motifs. , 2010, Chemical reviews.

[15]  S. Heinemann,et al.  Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2. , 2010, Biochemistry.

[16]  Jermaine D Johnson,et al.  Encapsulation and enzyme-mediated release of molecular cargo in polysulfide nanoparticles. , 2011, ACS nano.

[17]  A. Gulino,et al.  Pathway-dependent self-assembly of perylene diimide/peptide conjugates in aqueous medium. , 2011, Chemistry.

[18]  R. Levine,et al.  Methionine sulfoxide reductase A is a stereospecific methionine oxidase , 2011, Proceedings of the National Academy of Sciences.

[19]  M. Tweedle,et al.  Fine-tuning the pH trigger of self-assembly. , 2012, Journal of the American Chemical Society.

[20]  Ximin He,et al.  Synthetic homeostatic materials with chemo-mechano-chemical self-regulation , 2012, Nature.

[21]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[22]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[23]  Nicola Tirelli,et al.  Oxidant‐Dependent REDOX Responsiveness of Polysulfides , 2012 .

[24]  Rein V. Ulijn,et al.  Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. , 2013, Journal of the American Chemical Society.

[25]  April R. Rodriguez,et al.  Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles. , 2013, Biomacromolecules.

[26]  T. Govindaraju,et al.  A supramolecular gel from a quadruple zwitterion that responds to both acid and base. , 2013, Angewandte Chemie.

[27]  Kyle L. Morris,et al.  Chemically programmed self-sorting of gelator networks , 2013, Nature Communications.

[28]  Pol Besenius,et al.  pH‐Schaltbare amphotere supramolekulare Copolymere , 2013 .

[29]  Jan P. Unsleber,et al.  pH-Switchable ampholytic supramolecular copolymers. , 2013, Angewandte Chemie.

[30]  Hao Wu,et al.  Higher-Order Assemblies in a New Paradigm of Signal Transduction , 2013, Cell.

[31]  Eduardo Mendes,et al.  Catalytic control over supramolecular gel formation. , 2013, Nature chemistry.

[32]  J. Sutherland,et al.  Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics , 2013, Open Biology.

[33]  Eduardo Mendes,et al.  Responsive biomimetic networks from polyisocyanopeptide hydrogels , 2013, Nature.

[34]  T. Deming,et al.  Multimodal switching of conformation and solubility in homocysteine derived polypeptides. , 2014, Journal of the American Chemical Society.

[35]  P. Besenius,et al.  pH-switchable self-assembled materials. , 2015, Macromolecular rapid communications.

[36]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[37]  Sijbren Otto,et al.  Supramolecular systems chemistry. , 2015, Nature nanotechnology.

[38]  Rein V Ulijn,et al.  Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures. , 2015, Angewandte Chemie.

[39]  Tom O. McDonald,et al.  Spatially resolved multicomponent gels , 2015, Nature Chemistry.

[40]  Andreas Walther,et al.  Biocatalytic Feedback-Driven Temporal Programming of Self-Regulating Peptide Hydrogels. , 2015, Angewandte Chemie.

[41]  P. Besenius,et al.  Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers , 2015 .

[42]  S. Raunser,et al.  pH-regulated selectivity in supramolecular polymerizations: switching between Co- and homopolymers. , 2015, Chemistry.

[43]  Andreas Walther,et al.  Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies. , 2015, Soft matter.

[44]  I. Voets,et al.  Steric Constraints Induced Frustrated Growth of Supramolecular Nanorods in Water. , 2015, Chemistry.

[45]  M. Keller,et al.  The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions , 2015, Biomolecules.

[46]  S. Maiti,et al.  Dissipative self-assembly of vesicular nanoreactors. , 2016, Nature chemistry.

[47]  J. Pojman,et al.  Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction , 2016, Angewandte Chemie.

[48]  R. Eelkema,et al.  Catalysis of Supramolecular Hydrogelation. , 2016, Accounts of chemical research.

[49]  Loai K. E. A. Abdelmohsen,et al.  Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. , 2016, Chemical reviews.

[50]  Irving R. Epstein,et al.  Reaction-diffusion processes at the nano- and microscales. , 2016, Nature nanotechnology.

[51]  F. Würthner,et al.  Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments, along with synthetic details for PBI 1. See DOI: 10.1039/c6sc02249a Click here for , 2016, Chemical science.

[52]  Bartosz A Grzybowski,et al.  The nanotechnology of life-inspired systems. , 2016, Nature nanotechnology.

[53]  J. Miravet,et al.  Sucrose-fueled, energy dissipative, transient formation of molecular hydrogels mediated by yeast activity. , 2016, Chemical communications.

[54]  G. Schatz,et al.  Energy landscapes and function of supramolecular systems , 2015, Nature materials.

[55]  H. Frey,et al.  Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether. , 2016, Journal of the American Chemical Society.

[56]  Andreas Walther,et al.  Materials learning from life: concepts for active, adaptive and autonomous molecular systems. , 2017, Chemical Society reviews.

[57]  N. Sekar,et al.  Enhanced NLO response in BODIPY-coumarin hybrids: density functional theory approach , 2017, Journal of Chemical Sciences.

[58]  J. Boekhoven,et al.  Dissipative out-of-equilibrium assembly of man-made supramolecular materials. , 2017, Chemical Society reviews.

[59]  T. Heuser,et al.  Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles. , 2017, Nano letters.

[60]  Tom F. A. de Greef,et al.  Non-equilibrium supramolecular polymerization , 2017, Chemical Society reviews.

[61]  Ankit Jain,et al.  Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. , 2017, Angewandte Chemie.

[62]  A. Bausch,et al.  Non-equilibrium dissipative supramolecular materials with a tunable lifetime , 2017, Nature Communications.

[63]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[64]  Yousef M. Abul-Haija,et al.  Biocatalytic Self-Assembly Cascades. , 2017, Angewandte Chemie.