Temperature dependence of piezoelectric properties of high- TC Bi (Mg1/2Ti1/2) O3 - PbTiO3

The temperature dependence of both polarization and electric-field induced strain was investigated for (1−x)Bi(Mg1/2Ti1/2)O3–xPbTiO3 (x=0.36, 0.37, and 0.38), with the morphotropic phase boundary located at x=0.37. Remanent polarization (Pr) and maximum polarization (Pmax) of all compositions are enhanced with increasing temperature up to 175 °C, which is rationalized as improved domain switching due to reduced tetragonality (c/a). The hysteresis during unipolar electric cycling tends to decrease with increase in the fraction of tetragonal phase. Temperature dependent x-ray diffraction demonstrates that switched non-180° domains are stable against thermal depoling above 200 °C, which indicates that the currently investigated materials are suitable for high temperature applications. This promising high-TC piezoelectric is further discussed with reference to oxygen octahedron of the tilted R3c and untilted R3m space groups and the tolerance factor (t).

[1]  Susan Trolier-McKinstry,et al.  Temperature dependence of the piezoelectric response in lead zirconate titanate films , 2004 .

[2]  William E Lee,et al.  Effects of Octahedral Tilting on the Piezoelectric Properties of Strontium/Barium/Niobium‐Doped Soft Lead Zirconate Titanate Ceramics , 2002 .

[3]  Matthew R. Suchomel,et al.  Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations , 2005 .

[4]  T. Yazawa,et al.  Fabrication of High-Density (Bi,La)(Zn,Mg,Ti)O3–PbTiO3 Solid Solutions with Ferroelectric and Piezoelectric Functionalities by Microstructural Control , 2008 .

[5]  K. Uchino,et al.  Phase transition in the PbTiO - A(B23Nb13)O3 (A = La, Bi; B = Zn, Mg) solid solutions , 1982 .

[6]  L. Pardo,et al.  Microstructure and temperature dependence of properties of morphotropic phase boundary Bi(Mg1/2Ti1/2)O3-PbTiO3 piezoceramics processed by conventional routes , 2007 .

[7]  Ce Sun,et al.  Zero thermal expansion in PbTiO3-based perovskites. , 2008, Journal of the American Chemical Society.

[8]  Michael J. Hoffmann,et al.  Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data , 2007 .

[9]  R. Eitel,et al.  Structural and electrical properties of (1−x)Bi(Ga1/4Sc3/4)O3–xPbTiO3 piezoelectric ceramics , 2003 .

[10]  Masao Takahashi Electrical Resistivity of Lead Zirconate Titanate Ceramics Containing Impurities , 1971 .

[11]  Matthew R. Suchomel,et al.  Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B′B″)O3 based dielectric ceramics , 2004 .

[12]  W. Groen,et al.  Investigation of the new piezoelectric system (1−x)Bi(MgTi)0.5O3–xPbTiO3 , 2005 .

[13]  Helmut Ehrenberg,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties , 2008 .

[14]  N. Setter,et al.  Piezoelectric materials in devices , 2002 .

[15]  L. E. Cross,et al.  Piezoelectric performances of lead-reduced (1-x)(Bi0.9La0.1)(Ga0.05Fe0.95)O3 -x(Pb0.9Ba0.1)TiO3 crystalline solutions in the morphotropic phase boundary , 2004 .

[16]  J. L. Chen,et al.  Structure and negative thermal expansion in the PbTiO3–BiFeO3 system , 2006 .

[17]  C. Randall,et al.  Structure and property investigation of a Bi-based perovskite solid solution: (1−x)Bi(Ni1∕2Ti1∕2)O3–xPbTiO3 , 2005 .

[18]  Thomas R. Shrout,et al.  New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics , 2001 .

[19]  J. Rödel,et al.  Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators , 2009 .

[20]  Clive A. Randall,et al.  Classification of transition temperature behavior in ferroelectric PbTiO3-Bi(Me'Me )O3 solid solutions , 2006 .

[21]  H. Kungl,et al.  Temperature dependence of poling strain and strain under high electric fields in LaSr-doped morphotropic PZT and its relation to changes in structural characteristics , 2007 .

[22]  R. Newnham,et al.  Materials for high temperature acoustic and vibration sensors: A review , 1994 .

[23]  C. Randall,et al.  Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb ( Zr , Ti ) O 3 , 2007 .

[24]  C. Randall,et al.  Dielectric and piezoelectric properties of niobium-modified BiInO_3–PbTiO_3 perovskite ceramics with high Curie temperatures , 2005 .

[25]  C. Randall,et al.  Investigation of bismuth-based perovskite system: (1−x)Bi(Ni2∕3Nb1∕3)O3–xPbTiO3 , 2005 .

[26]  W. Groen,et al.  New Bi(Mg0.75W0.25)O3-PbTiO3 ferroelectric ceramics , 2006 .

[27]  I. Reaney,et al.  Phase transition and chemical order in the ferroelectric perovskite (1−x)Bi(Mg3∕4W1∕4)O3–xPbTiO3 solid solution system , 2005 .

[28]  C. Randall,et al.  Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution (1-x)BiScO3–xPbTiO3 , 2002 .

[29]  I. Reaney,et al.  Investigation of a high Tc piezoelectric system: (1−x)Bi(Mg1/2Ti1/2)O3–(x)PbTiO3 , 2004 .

[30]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[31]  C. Randall,et al.  Dielectric, piezoelectric and elastic properties of tetragonal BiScO3-PbTiO3 single crystal with single domain , 2004 .

[32]  Matthew R. Suchomel,et al.  Enhanced tetragonality in (x)PbTiO3-(1−x)Bi(Zn1∕2Ti1∕2)O3 and related solid solution systems , 2005 .