Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition

This paper provides a detailed review of the global/local non-intrusive coupling algorithm. Such method allows to alter a global finite element model, without actually modifying its corresponding numerical operator. We also look into improvements of the initial algorithm (Quasi-Newton and dynamic relaxation), and provide comparisons based on several relevant test cases. Innovative examples and advanced applications of the non-intrusive coupling algorithm are provided, granting a handy framework for both researchers and engineers willing to make use of such process. Finally, a novel nonlinear domain decomposition method is derived from the global/local non-intrusive coupling strategy, without the need to use a parallel code or software. Such method being intended to large scale analysis, we show its scalability. Jointly, an efficient high level Message Passing Interface coupling framework is also proposed, granting an universal and flexible way for easy software coupling. A sample code is also given.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  Abdellatif Agouzal,et al.  Une méthode d'éléments finis hybrides en décomposition de domaines , 1995 .

[3]  Mats G. Larson,et al.  Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D , 2012, 1210.7076.

[4]  John D. Whitcomb,et al.  Iterative Global/Local Finite Element Analysis , 1990 .

[5]  François-Xavier Roux A FETI-2LM Method for Non-Matching Grids , 2009 .

[6]  Patrick Laborde,et al.  A Reduced Basis Enrichment for the eXtended Finite Element Method , 2009 .

[7]  Patrick Laborde,et al.  Spider XFEM, an extended finite element variant for partially unknown crack-tip displacement , 2008 .

[8]  Martin J. Gander,et al.  Algorithm 932: PANG: Software for nonmatching grid projections in 2D and 3D with linear complexity , 2013, TOMS.

[9]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[10]  Hachmi Ben Dhia,et al.  On the use of XFEM within the Arlequin framework for the simulation of crack propagation , 2010 .

[11]  Damijan Markovic,et al.  Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures , 2003 .

[12]  Wah June Leong,et al.  Convergence of Symmetric Rank-one Method Based on Modified Quasi-Newton Equation , 2010 .

[13]  Olivier Allix,et al.  A two‐scale approximation of the Schur complement and its use for non‐intrusive coupling , 2011 .

[14]  Ludovic Barrière,et al.  Stratégies de calcul intensif pour la simulation du post-flambement local des grandes structures composites raidies aéronautiques , 2014 .

[15]  François-Xavier Roux,et al.  Multimodeling of multi-alterated structures in the Arlequin framework , 2008 .

[16]  Laurent Champaney,et al.  A multiscale extended finite element method for crack propagation , 2008 .

[17]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[18]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[19]  Pierre Villon,et al.  Effect of surface defects on structure failure , 2008 .

[20]  P. Ladevèze,et al.  Sur une famille d'algorithmes en mécanique des structures , 1985 .

[21]  Jean-François Remacle,et al.  Substructuring FE-XFE approaches applied to three-dimensional crack propagation , 2008 .

[22]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[23]  Stéphane Roux,et al.  Hybrid analytical and extended finite element method (HAX‐FEM): A new enrichment procedure for cracked solids , 2010 .

[24]  Olivier Allix,et al.  A coupling strategy for adaptive local refinement in space and time with a fixed global model in explicit dynamics , 2014 .

[25]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[26]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[27]  J. Mandel Balancing domain decomposition , 1993 .

[28]  Bo Ping Wang,et al.  An efficient zooming method for finite element analysis , 1984 .

[29]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[30]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[31]  O. Widlund,et al.  Iterative Methods for the Solution of Elliptic Problems on Regions, Partitioned Into Substructures , 2015 .

[32]  C. Sun,et al.  A refined global‐local finite element analysis method , 1991 .

[33]  Francesca Rapetti,et al.  Basics and some applications of the mortar element method , 2005 .

[34]  Ekkehard W. Sachs,et al.  Local Convergence of the Symmetric Rank-One Iteration , 1995, Comput. Optim. Appl..

[35]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[36]  C. Duarte,et al.  A generalized finite element method with global-local enrichment functions for confined plasticity problems , 2012 .

[37]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[38]  Raphael T. Haftka,et al.  Fast exact linear and non‐linear structural reanalysis and the Sherman–Morrison–Woodbury formulas , 2001 .

[39]  Raymond S. Tuminaro,et al.  An algebraic multigrid approach to solve extended finite element method based fracture problems , 2013 .

[40]  Pierre Ladevèze,et al.  A scalable time–space multiscale domain decomposition method: adaptive time scale separation , 2010 .

[41]  Johann Rannou,et al.  Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics , 2014 .

[42]  Johann Rannou,et al.  A local multigrid X‐FEM strategy for 3‐D crack propagation , 2009 .

[43]  Olivier Allix,et al.  Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses , 2007 .

[44]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[45]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[46]  J. Rannou,et al.  LOW INTRUSIVE COUPLING OF IMPLICIT AND EXPLICIT INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS: APPLICATION TO LOW ENERGY IMPACTS ON COMPOSITE STRUCTURES , 2014 .

[47]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[48]  P. Ladevèze,et al.  A multiscale computational approach for contact problems , 2002 .

[49]  Jean-François Remacle,et al.  Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures , 2009 .

[50]  Pierre Kerfriden,et al.  Nitsche's method method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling , 2013, 1308.2910.

[51]  Olivier Pironneau,et al.  Numerical zoom for advection diffusion problems with localized multiscales , 2011 .

[52]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[53]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[54]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[55]  Franco Brezzi,et al.  The three‐field formulation for elasticity problems , 2005 .

[56]  Joël Wagner,et al.  Multiscale algorithm with patches of finite elements , 2007, Math. Comput. Simul..

[57]  Julien Réthoré,et al.  Direct estimation of generalized stress intensity factors using a multigrid XFEM , 2011 .

[58]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[59]  Alex Pothen,et al.  ColPack: Software for graph coloring and related problems in scientific computing , 2013, TOMS.

[60]  Stéphane Pagano,et al.  Changement d'échelles et zoom structural , 2011 .

[61]  Martin J. Gander,et al.  Domain Decomposition Methods in Science and Engineering XVIII , 2009 .

[62]  Anthony Gravouil Marie-Christine Local/global non-intrusive crack propagation simulation , 2013 .

[63]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[64]  Y. Maday,et al.  Optimal convergence properties of the FETI domain decomposition method , 2007 .

[65]  Pierre Ladevèze,et al.  A micro-meso computational strategy for the prediction of the damage and failure of laminates , 2012 .

[66]  Qin Sun,et al.  A non-intrusive global/local algorithm with non-matching interface: Derivation and numerical validation , 2014 .

[67]  Mathilde Chevreuil,et al.  A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties , 2013 .

[68]  Pierre Gosselet,et al.  A Nonlinear Dual-Domain Decomposition Method: Application to Structural Problems with Damage , 2008 .

[69]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[70]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[71]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[72]  David Dureisseix,et al.  Une nouvelle stratégie de calcul micro/macro en mécanique des structures , 1999 .

[73]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[74]  I. Babuska,et al.  The generalized finite element method , 2001 .

[75]  Olivier Allix,et al.  Nonintrusive coupling of 3D and 2D laminated composite models based on finite element 3D recovery , 2014, 1501.01933.

[76]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[77]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[78]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[79]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[80]  Dae-Jin Kim,et al.  Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method , 2012 .

[81]  Steven Marguet,et al.  An adaptive model reduction strategy for post-buckling analysis of stiffened structures , 2013 .

[82]  Maher Moakher,et al.  A local projection stabilization of fictitious domain method for elliptic boundary value problems , 2014 .

[83]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[84]  O. Allix,et al.  Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .

[85]  Alain Combescure,et al.  An approach to the connection between subdomains with non‐matching meshes for transient mechanical analysis , 2002 .

[86]  Pierre Villon,et al.  Effect of surface defects on structure failure : a two-scale approach , 2022 .

[87]  Barbara Wohlmuth A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .