Chloride Uptake and Base Secretion in Freshwater Fish: A Transepithelial Ion‐Transport Metabolon?

Despite all the efforts and technological advances during the last few decades, the cellular mechanisms for branchial chloride uptake in freshwater (FW) fish are still unclear. Although a tight 1:1 link with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$\mathrm{HCO}\,^{-}_{3}$$ \end{document} secretion has been established, not much is known about the identity of the ion‐transporting proteins involved or the energizing steps that allow for the inward transport of Cl− against the concentration gradient. We propose a new model for Cl− uptake in FW fish whereby the combined action of an apical anion exchanger, cytoplasmic carbonic anhydrase, and basolateral V‐type H+‐ATPase creates a local [ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$\mathrm{HCO}\,^{-}_{3}$$ \end{document} ] high enough to energize Cl− uptake. Our model is based on analyses of structure‐function relationships, reinterpretation of previous results, and novel observations about gill cell subtypes and immunolocalization of the V‐H+‐ATPase.

[1]  G. Goss,et al.  Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion , 2006, Journal of Experimental Biology.

[2]  S. Perry,et al.  The role of branchial carbonic anhydrase in acid-base regulation in rainbow trout (Oncorhynchus mykiss) , 2006, Journal of Experimental Biology.

[3]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[4]  G. Genovese,et al.  Possible role of carbonic anhydrase, V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[5]  S. Perry,et al.  Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution , 2005, Journal of Experimental Biology.

[6]  Hannes Lohi,et al.  Functional Comparison of Mouse slc26a6 Anion Exchanger with Human SLC26A6 Polypeptide Variants , 2005, Journal of Biological Chemistry.

[7]  G. Goss,et al.  Regulation of branchial V-H+-ATPase, Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias) , 2005, Journal of Experimental Biology.

[8]  R. Rizzuto Microdomains of Intracellular Ca : Molecular Determinants and Functional Consequences , 2005 .

[9]  K. Choe,et al.  The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. , 2005, Physiological reviews.

[10]  D. Arndt-Jovin,et al.  Imaging takes a quantum leap. , 2004, Physiology.

[11]  K. Finberg,et al.  Renal vacuolar H+-ATPase. , 2004, Physiological reviews.

[12]  P. Hwang,et al.  Cl− Uptake Mechanism in Freshwater‐Adapted Tilapia (Oreochromis mossambicus) , 2004, Physiological and Biochemical Zoology.

[13]  S. Muallem,et al.  Gating of CFTR by the STAS domain of SLC26 transporters , 2004, Nature Cell Biology.

[14]  L. B. Kirschner The mechanism of sodium chloride uptake in hyperregulating aquatic animals , 2004, Journal of Experimental Biology.

[15]  G. Goss,et al.  Seawater acclimation causes independent alterations in Na+/K+- and H+-ATPase activity in isolated mitochondria-rich cell subtypes of the rainbow trout gill , 2004, Journal of Experimental Biology.

[16]  M. Romero,et al.  The SLC26 gene family of multifunctional anion exchangers , 2004, Pflügers Archiv.

[17]  S. Perry,et al.  Morphological responses of the rainbow trout (Oncorhynchus mykiss) gill to hyperoxia, base (NaHCO3) and acid (HCl) infusions , 1994, Fish Physiology and Biochemistry.

[18]  C. Wood,et al.  Two-substrate kinetic analysis: a novel approach linking ion and acid-base transport at the gills of freshwater trout, Oncorhynchus mykiss , 1991, Journal of Comparative Physiology B.

[19]  P. Laurent,et al.  Identification and immunocytochemical localization of two different carbonic anhydrase isoenzymes in teleostean fish erythrocytes and gill epithelia , 2004, Histochemistry.

[20]  S. Perry,et al.  Bicarbonate permeability and immunological evidence for an anion exchanger-like protein in the red blood cells of the sea lamprey, Petromyzon marinus , 2004, Journal of Comparative Physiology B.

[21]  N. Willumsen,et al.  Proton pump-driven cutaneous chloride uptake in anuran amphibia. , 2003, Biochimica et biophysica acta.

[22]  I. Novak,et al.  Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). , 2003, Biochimica et biophysica acta.

[23]  S. Perry,et al.  Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. , 2003, Journal of experimental zoology. Part A, Comparative experimental biology.

[24]  J. Ashmore,et al.  Sugar Transport by Mammalian Members of the SLC26 Superfamily of Anion‐Bicarbonate Exchangers , 2003, The Journal of physiology.

[25]  F. Amalric,et al.  Molecular and functional characterization of SLC26A11, a sodium‐independent sulfate transporter from high endothelial venules , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  T. Kaneko,et al.  Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment , 2003, Journal of Experimental Biology.

[27]  J. Kere,et al.  Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. , 2003, American journal of physiology. Cell physiology.

[28]  G. Goss,et al.  Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells , 2003, Journal of Experimental Biology.

[29]  G. Giebisch,et al.  Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid-base status. , 2002, Kidney international.

[30]  M. Romero,et al.  Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. , 2002, American journal of physiology. Renal physiology.

[31]  J. Verlander,et al.  Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  W. Marshall,et al.  Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. , 2002, The Journal of experimental zoology.

[33]  D. Randall,et al.  Ionoregulatory Changes in the Gill Epithelia of Coho Salmon during Seawater Acclimation , 2002, Physiological and Biochemical Zoology.

[34]  J. Kere,et al.  Functional Characterization of Three Novel Tissue-specific Anion Exchangers SLC26A7, -A8, and -A9* , 2002, The Journal of Biological Chemistry.

[35]  C. Wood,et al.  Copper uptake across rainbow trout gills: mechanisms of apical entry. , 2002, The Journal of experimental biology.

[36]  G. Goss,et al.  Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[37]  J. Casey,et al.  Bicarbonate transport proteins. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[38]  G. Goss,et al.  Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[39]  E. Green,et al.  Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Kere,et al.  Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. , 2000, Genomics.

[41]  J. M. Wilson,et al.  NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. , 2000, The Journal of experimental biology.

[42]  E. Koonin,et al.  The STAS domain — a link between anion transporters and antisigma-factor antagonists , 2000, Current Biology.

[43]  Flik,et al.  In vivo bafilomycin-sensitive Na(+) uptake in young freshwater fish , 1999, The Journal of experimental biology.

[44]  E. W. Miles,et al.  The Molecular Basis of Substrate Channeling* , 1999, The Journal of Biological Chemistry.

[45]  Rong Wang,et al.  The Pendred syndrome gene encodes a chloride-iodide transport protein , 1999, Nature Genetics.

[46]  J. Kere,et al.  Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[47]  S. Perry,et al.  Gill morphology and acid-base regulation in freshwater fishes. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[48]  S. Perry The chloride cell: structure and function in the gills of freshwater fishes. , 1997, Annual review of physiology.

[49]  U. Klein,et al.  The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin. , 1997, The Journal of experimental biology.

[50]  Gilmour,et al.  The effects of softwater acclimation on respiratory gas transfer in the rainbow trout Oncorhynchus mykiss , 1995, The Journal of experimental biology.

[51]  Sullivan,et al.  Immunolocalization of proton pumps (H+-ATPase) in pavement cells of rainbow trout gill , 1995, The Journal of experimental biology.

[52]  P. Traber,et al.  The Down Regulated in Adenoma (dra) Gene Encodes an Intestine-specific Membrane Sulfate Transport Protein (*) , 1995, The Journal of Biological Chemistry.

[53]  Morgan,et al.  The effects of thiocyanate on the intracellular ion concentrations of branchial epithelial cells of brown trout , 1995, The Journal of experimental biology.

[54]  Onken,et al.  A V-ATPase drives active, electrogenic and Na+-independent Cl- absorption across the gills of Eriocheir sinensis , 1995, The Journal of experimental biology.

[55]  S. Perry,et al.  10 Ultrastructural and Morphometric Studies on Ion and Acid-Base Transport Processes in Freshwater Fish , 1995 .

[56]  S. McCormick 11 Hormonal Control of Gill Na+,K+-ATPase and Chloride Cell Function , 1995 .

[57]  Randall,et al.  IMMUNOLOCALIZATION OF H+-ATPase IN THE GILL EPITHELIA OF RAINBOW TROUT , 1994, The Journal of experimental biology.

[58]  Eric S. Lander,et al.  The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping , 1994, Cell.

[59]  Morgan,et al.  INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS , 1994, The Journal of experimental biology.

[60]  W. Kühlbrandt,et al.  Three‐dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. , 1994, The EMBO journal.

[61]  Wright.,et al.  AMMONIA EXCRETION IN FRESHWATER RAINBOW TROUT (ONCORHYNCHUS MYKISS) AND THE IMPORTANCE OF GILL BOUNDARY LAYER ACIDIFICATION: LACK OF EVIDENCE FOR Na+/NH4+ EXCHANGE , 1994, The Journal of experimental biology.

[62]  P. Meier,et al.  Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. , 1994, The Journal of biological chemistry.

[63]  S. Perry,et al.  Physiological and morphological regulation of acid- base status during hypercapnia in rainbow trout (Oncorhynchus mykiss) , 1993 .

[64]  S. Perry,et al.  The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts , 1992 .

[65]  G. Schwartz,et al.  Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. , 1992, The American journal of physiology.

[66]  C. Wood,et al.  Intracellular acid-base responses to environmental hyperoxia and normoxic recovery in rainbow trout. , 1991, Respiration physiology.

[67]  M. Pisam,et al.  Mitochondria-Rich Cells in the Gill Epithelium of Teleost Fishes: An Ultrastructural Approach , 1991 .

[68]  E. Larsen Chloride transport by high-resistance heterocellular epithelia. , 1991, Physiological reviews.

[69]  P. Prunet,et al.  Ultrastructural features of mitochondria-rich cells in stenohaline freshwater and seawater fishes. , 1990, The American journal of anatomy.

[70]  S. Perry,et al.  Adaptational Responses of Rainbow Trout to Lowered External Nacl Concentration: Contribution of the Branchial Chloride Cell , 1989 .

[71]  M. Avella,et al.  A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri) , 1989 .

[72]  G. Schwartz,et al.  Postnatal maturation of rabbit renal collecting duct: intercalated cell function. , 1987, The American journal of physiology.

[73]  M. Pisam,et al.  Two types of chloride cells in the gill epithelium of a freshwater-adapted euryhaline fish: Lebistes reticulatus; their modifications during adaptation to saltwater. , 1987, The American journal of anatomy.

[74]  P. Srere,et al.  Complexes of sequential metabolic enzymes. , 1987, Annual review of biochemistry.

[75]  M. Pisam Membranous systems in the “chloride cell” of teleostean fish gill; their modifications in response to the salinity of the environment , 1981, The Anatomical record.

[76]  C. Wood,et al.  Branchial and Renal Acid and Ion Fluxes in the Rainbow Trout, Salmo Gairdneri, at Low Environmental pH , 1981 .

[77]  S. Perry,et al.  Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, Salmo gairdneri. , 1981, The Journal of experimental zoology.

[78]  C. Sardet Freeze fracture of the gill epithelium of euryhaline teleost fish. , 1980, The American journal of physiology.

[79]  P. Laurent,et al.  Morphology of gill epithelia in fish. , 1980, The American journal of physiology.

[80]  C. Sardet,et al.  The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation , 1979, The Journal of cell biology.

[81]  S. Hootman,et al.  Ultracytochemical localization of Na+,K+‐activated ATPase in chloride cells from the gills of a euryhaline teleost , 1979, The Anatomical record.

[82]  L. Kinter,et al.  Teleost chloride cell. II. Autoradiographic localization of gill Na,K- ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments , 1976, The Journal of cell biology.

[83]  T. Kerstetter,et al.  Active Chloride Transport by the Gills of Rainbow Trout (Salmo Gairdneri) , 1972 .

[84]  R. Motais,et al.  Transport mechanisms in the teleostean gill and amphibian skin. , 1972, Annual review of physiology.

[85]  T. Maren,et al.  Carbonic anhydrase: chemistry, physiology, and inhibition. , 1967, Physiological reviews.

[86]  J. Maetz,et al.  The Mechanism of Sodium and Chloride Uptake by the Gills of a Fresh-Water Fish, Carassius auratus , 1964, The Journal of general physiology.

[87]  W. Doyle,et al.  The So-Called Chloride Cell of the Fish Gill , 1961, Physiological Zoology.

[88]  D. Copeland The cytological basis of chloride transfer in the gills of Fundulus heteroclitus , 1948, Journal of morphology.

[89]  E. Willmer,et al.  ‘Chloride secreting cells’ in the gills of fishes, with special reference to the common eel , 1932, The Journal of physiology.