3.08 – Time Variable Gravity from Satellites

Satellite measurements of time-variable gravity are a new data type, capable of addressing a wide variety of geophysical problems. This subject, in its present form, began with the 2002 launch of the Gravity Recovery and Climate Experiment (GRACE). GRACE has been providing regular monthly estimates of the Earth’s gravity field down to scales of several hundred kilometers. Any process that involves enough redistribution of mass at those temporal and spatial scales is a possible target for GRACE. There are applications for hydrology, oceanography, the cryosphere, and the solid Earth. This chapter summarizes the observational and theoretical framework used to interpret time-variable satellite gravity measurements, and reviews some of the evolving geophysical applications of this technique.

[1]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[2]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[3]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[4]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[5]  D. Dong,et al.  Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric and Ocean Tidal Excitation , 1994 .

[6]  P. Armienti,et al.  Cenozoic magmatism in the western Ross Embayment: Role of mantle plume versus plate dynamics in the development of the West Antarctic Rift System , 2002 .

[7]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[8]  C. Hughes,et al.  Observing seasonal bottom pressure variability in the North Pacific with GRACE , 2006 .

[9]  Scott B. Luthcke,et al.  FAST TRACK PAPER: Tide model errors and GRACE gravimetry: towards a more realistic assessment , 2006 .

[10]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[11]  S. Desai,et al.  Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly , 2006 .

[12]  C. Wunsch,et al.  Measuring gravity field variability, the geoid, ocean bottom pressure fluctuations, and their dynamical implications , 2004 .

[13]  Duncan J. Wingham,et al.  A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance , 2000 .

[14]  R. Kwok,et al.  Recent trends in Arctic Ocean mass distribution revealed by GRACE , 2007 .

[15]  W. Gutowski,et al.  Atmospheric Water Vapor Transport in NCEP–NCAR Reanalyses: Comparison with River Discharge in the Central United States , 1997 .

[16]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[17]  Frédéric Frappart,et al.  Time variations of land water storage from an inversion of 2 years of GRACE geoids , 2005 .

[18]  G. Niu,et al.  Assessing a land surface model's improvements with GRACE estimates , 2006 .

[19]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[20]  S. Jayne,et al.  A method of inferring changes in deep ocean currents from satellite measurements of time‐variable gravity , 2002 .

[21]  Chen Ji,et al.  Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake , 2006, Science.

[22]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[23]  S. Swenson,et al.  Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE) , 2003 .

[24]  B. Tapley,et al.  Antarctic mass rates from GRACE , 2006 .

[25]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[26]  C. K. Shum,et al.  Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets , 2006 .

[27]  D. Chambers,et al.  Long‐period ocean heat storage rates and basin‐scale heat fluxes from TOPEX , 1997 .

[28]  Byron D. Tapley,et al.  Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations , 1999 .

[29]  S. Swenson,et al.  Climate model biases in seasonality of continental water storage revealed by satellite gravimetry , 2006 .

[30]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[31]  O. Andersen,et al.  Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions , 2006 .

[32]  Frédéric Frappart,et al.  Evolution of high‐latitude snow mass derived from the GRACE gravimetry mission (2002–2004) , 2006 .

[33]  Petra Döll,et al.  GRACE observations of changes in continental water storage , 2006 .

[34]  B. Chao,et al.  Time‐variable gravity signal during the water impoundment of China's Three‐Gorges Reservoir , 2002 .

[35]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[36]  Victor Zlotnicki,et al.  Ocean bottom pressure waves predicted in the tropical Pacific , 2004 .

[37]  C. Reigber,et al.  Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models , 2006 .

[38]  J. Wahr,et al.  A method for separating antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data , 2002 .

[39]  B. Chao,et al.  Temporal variation of the Earth's low‐degree zonal gravitational field caused by atmospheric mass redistribution: 1980–1988 , 1991 .

[40]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[41]  Isabella Velicogna,et al.  Greenland mass balance from GRACE , 2005 .

[42]  C. Shum,et al.  Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement , 2005 .

[43]  R. Steven Nerem,et al.  Preliminary observations of global ocean mass variations with GRACE , 2004 .

[44]  T. Nakaegawa Detectability assessment of interannual variations in terrestrial water storage from satellite gravimetry using an offline land surface model simulation , 2006 .

[45]  Philip Moore,et al.  Annual and semiannual variations of the Earth's gravitational field from satellite laser ranging and CHAMP , 2005 .

[46]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[47]  John Wahr,et al.  Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements , 2006 .

[48]  C. Shum,et al.  GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica , 2005 .

[49]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[50]  J. Famiglietti,et al.  Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[51]  J. Wahr,et al.  Can surface pressure be used to remove atmospheric , 2001 .

[52]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .

[53]  C. Reigber,et al.  CHAMP mission status , 2002 .

[54]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[55]  Masato Furuya,et al.  Water level changes at an ice‐dammed lake in west Greenland inferred from InSAR data , 2005 .

[56]  Nico Sneeuw,et al.  Energy integral method for gravity field determination from satellite orbit coordinates , 2003 .

[57]  Peter J. Clarke,et al.  Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry , 2006 .

[58]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[59]  James L. Davis,et al.  Constraining hydrological and cryospheric mass flux in southeastern Alaska using space‐based gravity measurements , 2005 .

[60]  Matthew Rodell,et al.  Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land‐atmosphere water balance , 2005 .

[61]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[62]  S. Jayne,et al.  Observing ocean heat content using satellite gravity and altimetry , 2003 .

[63]  O. Andersen,et al.  Global inter‐annual gravity changes from GRACE: Early results , 2005 .

[64]  Ki-Weon Seo,et al.  Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2006 .

[65]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[66]  C. Shum,et al.  Improved estimation of terrestrial water storage changes from GRACE , 2005 .

[67]  Douglas A. Miller,et al.  GCIP water and energy budget synthesis (WEBS) , 2002 .

[68]  J. Wahr,et al.  Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984 , 1992 .

[69]  John M. Wahr,et al.  The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate , 1986 .

[70]  O. Andersen,et al.  Correcting GRACE gravity fields for ocean tide effects , 2002 .

[71]  Don P. Chambers,et al.  Observing seasonal steric sea level variations with GRACE and satellite altimetry , 2006 .

[72]  Christopher Jekeli,et al.  Precise estimation of in situ geopotential differences from GRACE low‐low satellite‐to‐satellite tracking and accelerometer data , 2006 .

[73]  G. Ramillien,et al.  Global time-variations of hydrological signals from GRACE satellite gravimetry , 2004 .

[74]  D. Dong,et al.  Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation , 1996 .

[75]  Peter Schwintzer,et al.  Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns , 2005 .

[76]  R. Nerem,et al.  Observations of annual variations of the Earth's gravitational field using satellite laser ranging and geophysical models , 2000 .

[77]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[78]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[79]  I. Fukumori,et al.  Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE , 2007 .

[80]  S. Swenson,et al.  Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[81]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[82]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[83]  A. Trupin Effects of polar ice on the Earth's rotation and gravitational potential , 1993 .

[84]  E. Schrama Impact of Limitations in Geophysical Background Models on Follow-on Gravity Missions , 2004 .

[85]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[86]  B. Tapley,et al.  Alaskan mountain glacial melting observed by satellite gravimetry , 2006 .

[87]  S. Seneviratne,et al.  GRACE‐derived terrestrial water storage depletion associated with the 2003 European heat wave , 2005 .

[88]  Matthew Rodell,et al.  The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US , 2002 .

[89]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[90]  C. Shum,et al.  Time‐variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field , 2004 .

[91]  John M. Wahr,et al.  Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid , 2002 .

[92]  C. Jekeli The determination of gravitational potential differences from satellite-to-satellite tracking , 1999 .

[93]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[94]  Clark R. Wilson,et al.  Simulated estimation of hydrological loads from GRACE , 2005 .

[95]  D. García,et al.  On the steric and mass‐induced contributions to the annual sea level variations in the Mediterranean Sea , 2006 .

[96]  K. Trenberth Using Atmospheric Budgets as a Constraint on Surface Fluxes , 1997 .

[97]  Pedro Elosegui,et al.  Climate‐driven deformation of the solid Earth from GRACE and GPS , 2004 .

[98]  Srinivas Bettadpur,et al.  Impact of short period, non‐tidal, temporal mass variability on GRACE gravity estimates , 2004 .

[99]  I. Fukumori,et al.  Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects , 2002, Science.

[100]  J. Wahr,et al.  The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound , 1995 .

[101]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[102]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[103]  Richard S. Gross,et al.  Changes in the Earth's rotation and low-degree gravitational field induced by earthquakes , 1987 .

[104]  Byron D. Tapley,et al.  Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations , 1997 .

[105]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[106]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.