Real-time inflation forecasting with high-dimensional models: The case of Brazil

We show that high-dimensional econometric models, such as shrinkage and complete subset regression, perform very well in the real-time forecasting of inflation in data-rich environments. We use Brazilian inflation as an application. It is ideal as an example because it exhibits a high short-term volatility, and several agents devote extensive resources to forecasting its short-term behavior. Thus, precise forecasts made by specialists are available both as a benchmark and as an important candidate regressor for the forecasting models. Furthermore, we combine forecasts based on model confidence sets and show that model combination can achieve superior predictive performances.

[1]  Gianni Amisano,et al.  Comparing Density Forecasts via Weighted Likelihood Ratio Tests , 2007 .

[2]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[3]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[4]  A. Belloni,et al.  Least Squares After Model Selection in High-Dimensional Sparse Models , 2009, 1001.0188.

[5]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Allan Timmermann,et al.  Complete subset regressions with large-dimensional sets of predictors , 2015 .

[8]  Allan Timmermann,et al.  Complete subset regressions , 2013 .

[9]  Stefan Laséen,et al.  Real-Time Forecasting for Monetary Policy Analysis: The Case of Sveriges Riksbank , 2016 .

[10]  I. Fisher,et al.  The theory of interest , 1956 .

[11]  Michael P. Clements,et al.  Real-time forecasting of inflation and output growth with autoregressive models in the presence of data revisions , 2013 .

[12]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[13]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[14]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[15]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[16]  Eduardo F. Mendes,et al.  ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors , 2016 .

[17]  A. Atkeson,et al.  Are Phillips Curves Useful for Forecasting Inflation , 2001 .

[18]  Libero Monteforte,et al.  Real-Time Forecasts of Inflation: The Role of Financial Variables: Real-Time Forecasts of Inflation , 2013 .

[19]  Francesco Ravazzolo,et al.  Real-Time Inflation Forecasting in a Changing World , 2013 .

[20]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[21]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[22]  Marcelo C. Medeiros,et al.  Forecasting macroeconomic variables in data-rich environments , 2016 .

[23]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[24]  Erik Figueiredo,et al.  Inflação inercial como um processo de longa memória: análise a partir de um modelo Arfima-Figarch , 2009 .

[25]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[26]  Emanuel Kohlscheen Uma nota sobre erros de previsão da inflação de curto-prazo , 2012 .

[27]  Gabriel F. R. Vasconcelos,et al.  Forecasting Brazilian Inflation with High-Dimensional Models , 2015 .

[28]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[29]  Eduardo F. Mendes,et al.  L_1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations , 2015 .

[30]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[31]  R. Ferreira,et al.  Modelos lineares e não lineares da curva de Phillips para previsão da taxa de inflação no Brasil , 2011 .

[32]  S. Turnovsky,et al.  Forecasting Inflation Using Commodity Price Aggregates , 2011 .

[33]  Libero Monteforte,et al.  Real Time Forecasts of Inflation: The Role of Financial Variables , 2008 .

[34]  Marco Lippi,et al.  Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area , 2002 .

[35]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast , 2007 .

[36]  Xu Han,et al.  Tests for Overidentifying Restrictions in Factor-Augmented VAR Models , 2014 .

[37]  Rodrigo Sekkel,et al.  Model Confidence Sets and forecast combination , 2017 .