Oscillatory gamma activity in humans and its role in object representation

[1]  O. Bertrand,et al.  Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans , 1999, Visual Neuroscience.

[2]  O Bertrand,et al.  A ring-shaped distribution of dipoles as a source model of induced gamma-band activity , 1999, Clinical Neurophysiology.

[3]  J. Rothwell,et al.  Cortical correlate of the Piper rhythm in humans. , 1998, Journal of neurophysiology.

[4]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[5]  R. Blake,et al.  Visual features that vary together over time group together over space , 1998, Nature Neuroscience.

[6]  Marius Usher,et al.  Visual synchrony affects binding and segmentation in perception , 1998, Nature.

[7]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[8]  Randolph Blake,et al.  Visual features that vary together over time group together over space , 1998, Nature Neuroscience.

[9]  O. Bertrand,et al.  Auditory induced 40-Hz activity during a frequency discrimination task , 1998, NeuroImage.

[10]  B. Renault,et al.  Meaningful visual perception induces complex spatio-temporal patterns of phase synchrony on scalp recordings. , 1998, NeuroImage.

[11]  J. Martinerie,et al.  Synchrony in Gamma-band Oscillations in Human Intracortical Recordings during Visual Discrimination. , 1998, NeuroImage.

[12]  C M Krause,et al.  Automatic auditory word perception as measured by 40 Hz EEG responses. , 1998, Electroencephalography and clinical neurophysiology.

[13]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[14]  D. Gaffan,et al.  Perirhinal Cortex Ablation Impairs Visual Object Identification , 1998, The Journal of Neuroscience.

[15]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  J. Donoghue,et al.  Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. , 1998, Journal of neurophysiology.

[17]  A. Revonsuo,et al.  The neural generation of a unified illusion in human vision , 1997, Neuroreport.

[18]  Gabriel Curio,et al.  Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex , 1997, Neuroscience Letters.

[19]  W. Singer,et al.  Neuronal assemblies: necessity, signature and detectability , 1997, Trends in Cognitive Sciences.

[20]  N. Birbaumer,et al.  High-frequency brain activity: Its possible role in attention, perception and language processing , 1997, Progress in Neurobiology.

[21]  Leslie G. Ungerleider,et al.  What fMRI has taught us about human vision , 1997, Current Opinion in Neurobiology.

[22]  Matthias M. Müller,et al.  Visually induced gamma‐band responses to coherent and incoherent motion: a replication study , 1997, Neuroreport.

[23]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[24]  O Bertrand,et al.  Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human , 1997, Neuroreport.

[25]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[26]  W G Sannita,et al.  Magnetically recorded oscillatory responses to luminance stimulation in man. , 1997, Electroencephalography and clinical neurophysiology.

[27]  R. Eckhorn,et al.  Stimulus-dependent modulations of correlated high-frequency oscillations in cat visual cortex. , 1997, Cerebral cortex.

[28]  J. Pernier,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  E Başar,et al.  Frontal gamma-band enhancement during multistable visual perception. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[30]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[31]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[32]  UTE LEONARDS,et al.  The Influence of Temporal Phase Differences on Texture Segmentation , 1996, Vision Research.

[33]  G. Pfurtscheller,et al.  Human cortical 40 Hz rhythm is closely related to EMG rhythmicity , 1996, Neuroscience Letters.

[34]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[35]  L. Marshall,et al.  Event-related gamma band activity during passive and active oddball tasks. , 1996, Neuroreport.

[36]  R Eckhorn,et al.  Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[38]  T Imada,et al.  Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. , 1996, Electroencephalography and clinical neurophysiology.

[39]  N. Birbaumer,et al.  Brain Rhythms of Language: Nouns Versus Verbs , 1996, The European journal of neuroscience.

[40]  G. Orban,et al.  Task dependency of visual processing in the human visual system , 1996, Behavioural Brain Research.

[41]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Freeman,et al.  Spatio-temporal correlations in human gamma band electrocorticograms. , 1996, Electroencephalography and clinical neurophysiology.

[44]  J. Movshon,et al.  Cortical oscillatory responses do not affect visual segmentation , 1996, Vision Research.

[45]  B. Feige,et al.  High-frequency cortical responses reflect lexical processing: an MEG study. , 1996, Electroencephalography and clinical neurophysiology.

[46]  W. Singer,et al.  Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. , 1995, Neuroreport.

[47]  Leslie G. Ungerleider Functional Brain Imaging Studies of Cortical Mechanisms for Memory , 1995, Science.

[48]  D. Barth,et al.  Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. , 1995, Journal of neurophysiology.

[49]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[50]  W G Sannita,et al.  Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man. , 1995, Electroencephalography and clinical neurophysiology.

[51]  F. Rösler,et al.  Stimulus-induced gamma oscillations: harmonics of alpha activity? , 1995, Neuroreport.

[52]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[53]  G. McCarthy,et al.  Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  C. Koch,et al.  Spatial displacement, but not temporal asynchrony, destroys figural binding , 1995, Vision Research.

[55]  R. Näätänen,et al.  Gabor filters: an informative way for analysing event-related brain activity , 1995, Journal of Neuroscience Methods.

[56]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[57]  T. Elbert,et al.  Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. , 1995, Electroencephalography and clinical neurophysiology.

[58]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[59]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[61]  Werner Lutzenberger,et al.  Words and pseudowords elicit distinct patterns of 30-Hz EEG responses in humans , 1994, Neuroscience Letters.

[62]  S Makeig,et al.  Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Pfurtscheller,et al.  Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. , 1994, Electroencephalography and clinical neurophysiology.

[64]  J. Desmedt,et al.  Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception , 1994, Neuroscience Letters.

[65]  M. Posner,et al.  Images of mind , 1994 .

[66]  T. Elbert,et al.  Oscillatory Event-Related Brain Dynamics , 1994, NATO ASI Series.

[67]  Christa Neuper,et al.  40-Hz oscillations during motor behavior in man , 1993, Neuroscience Letters.

[68]  B. Feige,et al.  Oscillatory brain activity during a motor task. , 1993, Neuroreport.

[69]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[70]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Y. Miyashita,et al.  Memory and imagery in the temporal lobe , 1993, Current Opinion in Neurobiology.

[72]  S. Makeig Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. , 1993, Electroencephalography and clinical neurophysiology.

[73]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Milner,et al.  The functional nature of neuronal oscillations , 1992, Trends in Neurosciences.

[75]  J. Hodges,et al.  Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. , 1992, Brain : a journal of neurology.

[76]  T. Bullock,et al.  Induced Rhythms in the Brain , 1992, Brain Dynamics.

[77]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[79]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[80]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[81]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[82]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[83]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[84]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[85]  M Barinaga,et al.  The mind revealed? , 1990, Science.

[86]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[87]  Antonio R. Damasio,et al.  The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones , 1989, Neural Computation.

[88]  J. Bouyer,et al.  Anatomical localization of cortical beta rhythms in cat , 1987, Neuroscience.

[89]  D. Regan,et al.  Evoked potentials in vision research 1961–1986 , 1986, Vision Research.

[90]  D. Sheer,et al.  Effect of problem solving on right and left hemisphere 40 hertz EEG activity. , 1982, Psychophysiology.

[91]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[92]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[93]  C. Perez-Borja,et al.  Depth electrographic studies of a focal fast response to sensory stimulation in the human , 1961 .

[94]  C W SEM-JACOBSEN,et al.  Electroencephalographic rhythms from the depths of the parietal, occipital and temporal lobes in man. , 1956, Electroencephalography and clinical neurophysiology.

[95]  Yves Delage,et al.  Le rêve : etude psychologique, philosophique et littéraire , 1920 .