Inclusion Relations Between Some Congruences Related to the Dot-depth Hierarchy

Abstract A complete class of generators for Straubing's dot-depth k monoids has been characterized as a class of quotients of the form A∗/∼ m where A∗ denotes the free monoid over a finite alphabet A, m denotes a k-tuple of positive integers, and ∼ m denotes a congruence related to an Ehrenfeucht-Fraisse game. In this paper, we first reduce the complete class of generators for dot-depth k to a complete class whose members are of dot-depth exactly k. We then study all the inclusion relations between the resulting congruences ∼ m . Several applications of these relations are discussed. For instance, a conjecture of Pin (which was shown by the author to be false in general) is shown to be true in an important special case.

[1]  Siew Hoon Sing Categories in algebra , 1997 .

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[4]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[5]  Francine Blanchet-Sadri,et al.  Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..

[6]  Francine Blanchet-Sadri,et al.  Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..

[7]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[8]  Robert Knast Some Theorems on Graph Congruences , 1983, RAIRO Theor. Informatics Appl..

[9]  Francine Blanchet-Sadri,et al.  On dot-depth two , 1990, RAIRO Theor. Informatics Appl..

[10]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[11]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[12]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[13]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[14]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[15]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[16]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[17]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[18]  David F. Cowan,et al.  Inverse Monoids of dot-Depth Two , 1993, Int. J. Algebra Comput..

[19]  Francine Blanchet-Sadri,et al.  Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..

[20]  Francine Blanchet-Sadri,et al.  Games, equations and the dot-depth hierarchy , 1989 .

[21]  Francine Blanchet-Sadri The Dot-Depth of a Generating Class of Aperiodic Monoids is Computable , 1992, Int. J. Found. Comput. Sci..

[22]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[23]  F. Blanchet-Sadri,et al.  Equations and dot-depth one , 1993 .

[24]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[25]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[26]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[27]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[28]  Jean-Éric Pin Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..

[29]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[30]  Francine Blanchet-Sadri,et al.  On a complete set of generators for dot-depth two , 1994, Discret. Appl. Math..

[31]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[32]  E. Polak,et al.  System Theory , 1963 .