Inclusion Relations Between Some Congruences Related to the Dot-depth Hierarchy
暂无分享,去创建一个
[1] Siew Hoon Sing. Categories in algebra , 1997 .
[2] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[3] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..
[4] Robert Knast,et al. A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..
[5] Francine Blanchet-Sadri,et al. Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..
[6] Francine Blanchet-Sadri,et al. Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..
[7] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[8] Robert Knast. Some Theorems on Graph Congruences , 1983, RAIRO Theor. Informatics Appl..
[9] Francine Blanchet-Sadri,et al. On dot-depth two , 1990, RAIRO Theor. Informatics Appl..
[10] Richard E. Ladner,et al. Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..
[11] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[12] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[13] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[14] Bret Tilson,et al. Categories as algebra: An essential ingredient in the theory of monoids , 1987 .
[15] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[16] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[17] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[18] David F. Cowan,et al. Inverse Monoids of dot-Depth Two , 1993, Int. J. Algebra Comput..
[19] Francine Blanchet-Sadri,et al. Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..
[20] Francine Blanchet-Sadri,et al. Games, equations and the dot-depth hierarchy , 1989 .
[21] Francine Blanchet-Sadri. The Dot-Depth of a Generating Class of Aperiodic Monoids is Computable , 1992, Int. J. Found. Comput. Sci..
[22] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[23] F. Blanchet-Sadri,et al. Equations and dot-depth one , 1993 .
[24] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[25] Howard Straubing. Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.
[26] R. McNaughton,et al. Counter-Free Automata , 1971 .
[27] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[28] Jean-Éric Pin. Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..
[29] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[30] Francine Blanchet-Sadri,et al. On a complete set of generators for dot-depth two , 1994, Discret. Appl. Math..
[31] Peter L. Hammer,et al. Discrete Applied Mathematics , 1993 .
[32] E. Polak,et al. System Theory , 1963 .