Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP

[1]  R. Nicoll,et al.  The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms , 2018, Nature Communications.

[2]  J. Lisman Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta) , 2017, Molecular Brain.

[3]  Seok-Jin R. Lee,et al.  CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca2+ Signals during LTP Induction, but Not Maintenance , 2017, Neuron.

[4]  R. Yasuda,et al.  Kinetics of Endogenous CaMKII Required for Synaptic Plasticity Revealed by Optogenetic Kinase Inhibitor , 2017, Neuron.

[5]  R. Nicoll A Brief History of Long-Term Potentiation , 2017, Neuron.

[6]  J. McNamara,et al.  Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity , 2016, Nature.

[7]  Sho Yagishita,et al.  State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines , 2016, Scientific Reports.

[8]  John Kuriyan,et al.  Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II , 2016, eLife.

[9]  H. Schulman,et al.  Author response: Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II , 2016 .

[10]  R. Nicoll,et al.  Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP , 2016, Proceedings of the National Academy of Sciences.

[11]  T. Matsuda,et al.  A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII , 2015, Neuron.

[12]  Y. Hayashi,et al.  Stoichiometry and Phosphoisotypes of Hippocampal AMPA-Type Glutamate Receptor Phosphorylation , 2015, Neuron.

[13]  S. Smirnakis,et al.  Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. , 2014, Developmental cell.

[14]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[15]  Shin Ishii,et al.  In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. , 2014, Biophysical journal.

[16]  J. Hell,et al.  CaMKII: Claiming Center Stage in Postsynaptic Function and Organization , 2014, Neuron.

[17]  Y. Hayashi,et al.  The Ca2+ and Rho GTPase signaling pathways underlying activity‐dependent actin remodeling at dendritic spines , 2012, Cytoskeleton.

[18]  Yasunori Hayashi,et al.  Structural plasticity of dendritic spines , 2012, Current Opinion in Neurobiology.

[19]  J. Hell,et al.  CaMKII binding to GluN2B is critical during memory consolidation , 2012, The EMBO journal.

[20]  S. Raghavachari,et al.  Quantitative estimates of the cytoplasmic, PSD, and NMDAR-bound pools of CaMKII in dendritic spines , 2011, Brain Research.

[21]  S. Coultrap,et al.  Improving a Natural CaMKII Inhibitor by Random and Rational Design , 2011, PloS one.

[22]  Jay T. Groves,et al.  A Mechanism for Tunable Autoinhibition in the Structure of a Human Ca2+/Calmodulin- Dependent Kinase II Holoenzyme , 2011, Cell.

[23]  T. Soderling,et al.  Long-Term Potentiation-Dependent Spine Enlargement Requires Synaptic Ca2+-Permeable AMPA Receptors Recruited by CaM-Kinase I , 2010, The Journal of Neuroscience.

[24]  H. Schulman,et al.  Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation , 2010, Nature Structural &Molecular Biology.

[25]  S. Mcconnell,et al.  A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory , 2009, Molecular and Cellular Neuroscience.

[26]  Masahiko Watanabe,et al.  Kinase-Dead Knock-In Mouse Reveals an Essential Role of Kinase Activity of Ca2+/Calmodulin-Dependent Protein Kinase IIα in Dendritic Spine Enlargement, Long-Term Potentiation, and Learning , 2009, The Journal of Neuroscience.

[27]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[28]  K. Willecke,et al.  The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors , 2008, Proceedings of the National Academy of Sciences.

[29]  D. Srivastava,et al.  Convergent CaMK and RacGEF signals control dendritic structure and function. , 2008, Trends in cell biology.

[30]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[31]  K. Mikoshiba,et al.  Phosphorylation of Homer3 by Calcium/Calmodulin-Dependent Kinase II Regulates a Coupling State of Its Target Molecules in Purkinje Cells , 2008, The Journal of Neuroscience.

[32]  E. Gratton,et al.  Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. , 2008, Biochemical and biophysical research communications.

[33]  R. Mains,et al.  Kalirin-7 Is an Essential Component of both Shaft and Spine Excitatory Synapses in Hippocampal Interneurons , 2008, The Journal of Neuroscience.

[34]  T. Soderling,et al.  Activity-Dependent Synaptogenesis: Regulation by a CaM-Kinase Kinase/CaM-Kinase I/βPIX Signaling Complex , 2008, Neuron.

[35]  C. Der,et al.  Specificity and Mechanism of Action of EHT 1864, a Novel Small Molecule Inhibitor of Rac Family Small GTPases* , 2007, Journal of Biological Chemistry.

[36]  J. Port,et al.  Dual mechanism of a natural CaMKII inhibitor. , 2007, Molecular biology of the cell.

[37]  D. Surmeier,et al.  Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines , 2007, Neuron.

[38]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[39]  Paul De Koninck,et al.  Transition from Reversible to Persistent Binding of CaMKII to Postsynaptic Sites and NR2B , 2006, The Journal of Neuroscience.

[40]  D. Liao,et al.  Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis , 2005, The Journal of Neuroscience.

[41]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[42]  Xiao-Jing Wang,et al.  The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover , 2005, PLoS biology.

[43]  A. Miyawaki,et al.  Visualization of Synaptic Ca2+ /Calmodulin-Dependent Protein Kinase II Activity in Living Neurons , 2005, The Journal of Neuroscience.

[44]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[45]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[46]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[47]  Yi Zhou,et al.  The eag Potassium Channel Binds and Locally Activates Calcium/Calmodulin-dependent Protein Kinase II* , 2004, Journal of Biological Chemistry.

[48]  J. Kuriyan,et al.  The Conformational Plasticity of Protein Kinases , 2002, Cell.

[49]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[50]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[51]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[52]  M. Kennedy,et al.  Densin-180 Forms a Ternary Complex with the α-Subunit of Ca2+/Calmodulin-Dependent Protein Kinase II and α-Actinin , 2001, The Journal of Neuroscience.

[53]  R. Huganir,et al.  Regulation of AMPA Receptor GluR1 Subunit Surface Expression by a 4.1N-Linked Actin Cytoskeletal Association , 2000, The Journal of Neuroscience.

[54]  A. Zhabotinsky Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. , 2000, Biophysical journal.

[55]  R. Yuste,et al.  Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. , 2000, Cerebral cortex.

[56]  C. Downes,et al.  Ca2+/Calmodulin-dependent Protein Kinase II Regulates Tiam1 by Reversible Protein Phosphorylation* , 1999, The Journal of Biological Chemistry.

[57]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[58]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[59]  T. Soderling,et al.  Characterization of a calmodulin kinase II inhibitor protein in brain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[61]  A. Ishida,et al.  Stabilization of Calmodulin-dependent Protein Kinase II through the Autoinhibitory Domain (*) , 1995, The Journal of Biological Chemistry.

[62]  T. Soderling Protein kinases. Regulation by autoinhibitory domains. , 1990, The Journal of biological chemistry.

[63]  K. Wennerberg,et al.  Analysis of activated GAPs and GEFs in cell lysates. , 2006, Methods in enzymology.

[64]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[65]  M. Pufall,et al.  Autoinhibitory domains: modular effectors of cellular regulation. , 2002, Annual review of cell and developmental biology.