Majority dynamics on trees and the dynamic cavity method

A voter sits on each vertex of an infinite tree of degree $k$, and has to decide between two alternative opinions. At each time step, each voter switches to the opinion of the majority of her neighbors. We analyze this majority process when opinions are initialized to independent and identically distributed random variables. In particular, we bound the threshold value of the initial bias such that the process converges to consensus. In order to prove an upper bound, we characterize the process of a single node in the large $k$-limit. This approach is inspired by the theory of mean field spin-glass and can potentially be generalized to a wider class of models. We also derive a lower bound that is nontrivial for small, odd values of $k$.

[1]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[2]  M. Degroot Reaching a Consensus , 1974 .

[3]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[4]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[5]  David R. McDonald,et al.  On Local Limit Theorem for Integer-Valued Random Variables , 1980 .

[6]  Eric Goles Ch.,et al.  Periodic behaviour of generalized threshold functions , 1980, Discret. Math..

[7]  T. Liggett Interacting Particle Systems , 1985 .

[8]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[9]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[10]  F. Papangelou GIBBS MEASURES AND PHASE TRANSITIONS (de Gruyter Studies in Mathematics 9) , 1990 .

[11]  D. McDonald,et al.  An elementary proof of the local central limit theorem , 1995 .

[12]  S. Kak Information, physics, and computation , 1996 .

[13]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[14]  M. Mézard,et al.  Out of equilibrium dynamics in spin-glasses and other glassy systems , 1997, cond-mat/9702070.

[15]  S. Goyal,et al.  Learning from neighbours , 1998 .

[16]  C. D. Howard,et al.  Zero-temperature ising spin dynamics on the homogeneous tree of degree three , 2000, Journal of Applied Probability.

[17]  Yuval Peres,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[18]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[19]  R. Schonmann,et al.  Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .

[20]  M. Talagrand Spin glasses : a challenge for mathematicians : cavity and mean field models , 2003 .

[21]  Fabio Martinelli,et al.  The Ising model on trees: boundary conditions and mixing time , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[22]  I. Castillo,et al.  Parallel dynamics of disordered Ising spin systems on finitely connected random graphs , 2004, cond-mat/0403172.

[23]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[24]  A. Dembo,et al.  Cugliandolo-Kurchan equations for dynamics of Spin-Glasses , 2004, math/0409273.

[25]  F. Martinelli,et al.  Phase ordering after a deep quench: the stochastic Ising and hard core gas models on a tree , 2004, math/0412450.

[26]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[27]  David Gamarnik,et al.  Counting without sampling: new algorithms for enumeration problems using statistical physics , 2006, SODA '06.

[28]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[29]  Yuval Peres,et al.  Bootstrap Percolation on Infinite Trees and Non-Amenable Groups , 2003, Combinatorics, Probability and Computing.

[30]  J. Kleinberg Algorithmic Game Theory: Cascading Behavior in Networks: Algorithmic and Economic Issues , 2007 .

[31]  S. Chatterjee Spin glasses and Stein’s method , 2007, 0706.3500.

[32]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[33]  S. Sondhi,et al.  Griffiths-McCoy singularities, Lee-Yang zeros, and the cavity method in a solvable diluted ferromagnet. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  F. Krzakala,et al.  Path-integral representation for quantum spin models: Application to the quantum cavity method and Monte Carlo simulations , 2008, 0807.2553.

[35]  R. Schonmann,et al.  Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions , 2008 .

[36]  S. Sondhi,et al.  Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.

[37]  A. Dembo,et al.  Gibbs Measures and Phase Transitions on Sparse Random Graphs , 2009, 0910.5460.

[38]  I. Neri,et al.  The cavity approach to parallel dynamics of Ising spins on a graph , 2009, 0905.3260.

[39]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[40]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[41]  Interacting particle system , 2011 .

[42]  N. Pimlott Learning from the neighbours. , 2012, Canadian family physician Medecin de famille canadien.