Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.

[1]  Ulrich F Keyser,et al.  Translocation frequency of double-stranded DNA through a solid-state nanopore. , 2015, Physical review. E.

[2]  Jiani Xie,et al.  A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin. , 2015, Angewandte Chemie.

[3]  Hai-Jun Su,et al.  Mechanical design of DNA nanostructures. , 2015, Nanoscale.

[4]  Nicholas A. W. Bell,et al.  Specific Protein Detection Using Designed DNA Carriers and Nanopores , 2015, Journal of the American Chemical Society.

[5]  M. Akeson,et al.  Discrimination among protein variants using an unfoldase-coupled nanopore. , 2014, ACS nano.

[6]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[7]  Andreas Ebner,et al.  IgGs are made for walking on bacterial and viral surfaces , 2014, Nature Communications.

[8]  H. Gaub,et al.  Protein-DNA chimeras for nano assembly. , 2014, ACS nano.

[9]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[10]  H. Bayley,et al.  Single-molecule site-specific detection of protein phosphorylation with a nanopore , 2014, Nature Biotechnology.

[11]  Jay X. Tang,et al.  Stiff filamentous virus translocations through solid-state nanopores , 2013, Nature Communications.

[12]  S. Knapp,et al.  Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate , 2013, Proceedings of the National Academy of Sciences.

[13]  Tim Liedl,et al.  Multiplexed ionic current sensing with glass nanopores. , 2013, Lab on a chip.

[14]  Silvia Hernández-Ainsa,et al.  Single protein molecule detection by glass nanopores. , 2013, ACS nano.

[15]  H. Bayley,et al.  Multistep protein unfolding during nanopore translocation. , 2013, Nature nanotechnology.

[16]  Mark Akeson,et al.  Unfoldase-mediated protein translocation through an α-hemolysin nanopore , 2013, Nature Biotechnology.

[17]  Cees Dekker,et al.  Fast translocation of proteins through solid state nanopores. , 2013, Nano letters.

[18]  Minghui Liu,et al.  Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. , 2012, Accounts of chemical research.

[19]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[20]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[21]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[22]  R. Seidel,et al.  Direct Mechanical Measurements Reveal the Material Properties of 3D DNA-Origami , 2012 .

[23]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[24]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[25]  Fernando Albertorio,et al.  Origins and consequences of velocity fluctuations during DNA passage through a nanopore. , 2011, Biophysical journal.

[26]  Shoji Takeuchi,et al.  Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. , 2011, Journal of the American Chemical Society.

[27]  Ulrich F Keyser,et al.  Detecting DNA folding with nanocapillaries. , 2010, Nano letters.

[28]  U. Rant,et al.  Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. , 2010, Nano letters.

[29]  N H Dekker,et al.  Noise in solid-state nanopores , 2008, Proceedings of the National Academy of Sciences.

[30]  Andre Marziali,et al.  Noise analysis and reduction in solid-state nanopores , 2007 .

[31]  M. Muthukumar Mechanism of DNA transport through pores. , 2007, Annual review of biophysics and biomolecular structure.

[32]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[33]  G. Zocchi,et al.  Local cooperativity mechanism in the DNA melting transition. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[36]  Robyn L Stanfield,et al.  Contrasting IgG structures reveal extreme asymmetry and flexibility. , 2002, Journal of molecular biology.

[37]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[38]  S. Henrickson,et al.  Simultaneous multianalyte detection with a nanometer-scale pore. , 2001, Analytical chemistry.

[39]  Charles R. Martin,et al.  Resistive-Pulse Sensing-From Microbes to Molecules. , 2000, Chemical reviews.

[40]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[41]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[42]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[43]  J. Gouaux,et al.  Designed protein pores as components for biosensors. , 1997, Chemistry & biology.