Geometrical embeddings of graphs
暂无分享,去创建一个
[1] David G. Larman. A Triangle Free Graph Which Cannot be square root of 3 Imbedded in any Euclidean Unit Sphere , 1978, J. Comb. Theory, Ser. A.
[2] A. Hajnal,et al. On decomposition of graphs , 1967 .
[3] Brian Alspach,et al. On embedding triangle-free graphs in unit spheres , 1977, Discret. Math..
[4] M. Simonovits,et al. ON THE CHROMATIC NUMBER OF GEOMETRIC GRAPHS , 1980 .
[5] M. Yannakakis. The Complexity of the Partial Order Dimension Problem , 1982 .
[6] Janos Simon,et al. Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..
[7] Vojtech Rödl. On combinatorial properties of spheres in euclidean spaces , 1984, Comb..
[8] P. Hammer,et al. Aggregation of inequalities in integer programming. , 1975 .
[9] Peter Frankl,et al. Embedding the n-cube in Lower Dimensions , 1986, Eur. J. Comb..
[10] Hiroshi Maehara,et al. Space graphs and sphericity , 1984, Discret. Appl. Math..
[11] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[12] Moshe Rosenfeld. Triangle free graphs that are not 3-embeddable in Sd , 1982 .
[13] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[14] W. T. Tutte,et al. ON THE DIMENSION OF A GRAPH , 1965 .
[15] Vojtech Rödl,et al. Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).