A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system

[1]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[2]  M. M. Abolhasani,et al.  Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters , 2015 .

[3]  Nae-Eung Lee,et al.  High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage , 2015 .

[4]  Han Byul Kang,et al.  (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators , 2015 .

[5]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[6]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[7]  N. Lee,et al.  Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. , 2015, ACS nano.

[8]  Geon-Tae Hwang,et al.  Flexible Piezoelectric Thin‐Film Energy Harvesters and Nanosensors for Biomedical Applications , 2015, Advanced healthcare materials.

[9]  Chang Kyu Jeong,et al.  Self-powered fully-flexible light-emitting system enabled by flexible energy harvester , 2014 .

[10]  Sang-Jae Kim,et al.  Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator. , 2014, ACS applied materials & interfaces.

[11]  Se Hyun Kim,et al.  Effects of semiconductor/dielectric interfacial properties on the electrical performance of top-gate organic transistors , 2014 .

[12]  Jingjing Zhao,et al.  A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors , 2014, Sensors.

[13]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[14]  Saad Mutashar,et al.  Energy harvesting for the implantable biomedical devices: issues and challenges , 2014, Biomedical engineering online.

[15]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[16]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[17]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[18]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[19]  T. Trung,et al.  A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature , 2014, Advanced materials.

[20]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[21]  Seok-Jin Yoon,et al.  Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process , 2013 .

[22]  Zhong Lin Wang,et al.  Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics , 2013 .

[23]  Zhong Lin Wang,et al.  Triboelectric nanogenerator built inside shoe insole for harvesting walking energy , 2013 .

[24]  Senentxu Lanceros-Méndez,et al.  Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites , 2013 .

[25]  Hiroshi Toshiyoshi,et al.  Insole Pedometer With Piezoelectric Energy Harvester and 2 V Organic Circuits , 2013, IEEE Journal of Solid-State Circuits.

[26]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[27]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[28]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[29]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[30]  P. Gupta,et al.  Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent , 2011 .

[31]  Minbaek Lee,et al.  Self-powered environmental sensor system driven by nanogenerators , 2011 .

[32]  Nae-Eung Lee,et al.  Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. , 2011, ACS nano.

[33]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[34]  Benoit Guiffard,et al.  Performance comparison of PZT and PMN–PT piezoceramics for vibration energy harvesting using standard or nonlinear approach , 2010 .

[35]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[36]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[37]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[38]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[39]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[40]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[41]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[42]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[43]  G. Whitesides,et al.  Generation of Gradients Having Complex Shapes Using Microfluidic Networks , 2001 .

[44]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[45]  Zheng Zhang,et al.  High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF , 2015 .

[46]  Mengdi Han,et al.  High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies , 2015 .