Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applications is included. A general conclusion and a perspective on the current limitations and recommended future research directions of lithium metal batteries are presented. The review concludes with an attempt at summarizing the theoretical and experimental achievements in lithium metal anodes and endeavors to realize the practical applications of lithium metal batteries.

[1]  Hong‐Jie Peng,et al.  Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes , 2018 .

[2]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[3]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[4]  S. Dou,et al.  Functional membrane separators for next-generation high-energy rechargeable batteries , 2017 .

[5]  Jong‐Chan Lee,et al.  2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries , 2017 .

[6]  M. Ishikawa,et al.  Lithium bis(fluorosulfonyl)imide based low ethylene carbonate content electrolyte with unusual solvation state , 2017 .

[7]  K. Uosaki,et al.  Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode , 2017 .

[8]  Ya‐Xia Yin,et al.  Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes , 2017, Advanced materials.

[9]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[10]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[11]  Feng Wu,et al.  Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries , 2017 .

[12]  Tingzheng Hou,et al.  Lithium Bond Chemistry in Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[13]  X. Tao,et al.  3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries , 2017 .

[14]  Tingzheng Hou,et al.  Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode , 2017 .

[15]  Biyi Xu,et al.  Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression , 2017 .

[16]  X. Tao,et al.  Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries , 2017 .

[17]  Yusheng Yang,et al.  Strategies of constructing stable and high sulfur loading cathodes based on the blade-casting technique , 2017 .

[18]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[19]  J. Connell,et al.  Lithium metal protected by atomic layer deposition metal oxide for high performance anodes , 2017 .

[20]  Fredrik Lindgren,et al.  Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries , 2017 .

[21]  J. Chai,et al.  An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries , 2017 .

[22]  Wen-Hau Zhang,et al.  A High‐Performance Li–O2 Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a LiPON‐Protected Lithium Anode , 2017, Advanced materials.

[23]  J. Xie,et al.  Making Li-metal electrodes rechargeable by controlling the dendrite growth direction , 2017, Nature Energy.

[24]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[25]  Lin Liu,et al.  Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode , 2017 .

[26]  B. Dunn,et al.  Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. , 2017, Nano letters.

[27]  G. Cui,et al.  Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes , 2017 .

[28]  Kun Fu,et al.  Garnet Solid Electrolyte Protected Li-Metal Batteries. , 2017, ACS applied materials & interfaces.

[29]  W. Yoon,et al.  Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries. , 2017, ChemSusChem.

[30]  S. Joo,et al.  Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. , 2017, ACS nano.

[31]  Doron Aurbach,et al.  Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries , 2017 .

[32]  Ashleigh M. Schwarz,et al.  In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries , 2017 .

[33]  Z. Wen,et al.  The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network , 2017 .

[34]  J. Tour,et al.  Lithium Batteries with Nearly Maximum Metal Storage. , 2017, ACS nano.

[35]  Wangda Li,et al.  Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. , 2017, ACS nano.

[36]  Shaofei Wang,et al.  Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects , 2017 .

[37]  K. Hashimoto,et al.  Effects of contaminant water on coulombic efficiency of lithium deposition/dissolution reactions in tetraglyme-based electrolytes , 2017 .

[38]  Doron Aurbach,et al.  Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution , 2017 .

[39]  Xuejie Huang,et al.  Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte , 2017 .

[40]  Boyang Liu,et al.  Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. , 2017, Nano letters.

[41]  A. Latz,et al.  Revealing SEI Morphology: In-Depth Analysis of a Modeling Approach , 2017 .

[42]  Hongkyung Lee,et al.  A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries , 2017 .

[43]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[44]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[45]  N. Imanishi,et al.  A reversible dendrite-free high-areal-capacity lithium metal electrode , 2017, Nature Communications.

[46]  Ji‐Guang Zhang,et al.  Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. , 2017, ACS applied materials & interfaces.

[47]  Yi Cui,et al.  Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix , 2017, Proceedings of the National Academy of Sciences.

[48]  Ji‐Guang Zhang,et al.  Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O2 Batteries , 2017 .

[49]  Yet-Ming Chiang,et al.  Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .

[50]  W. Richards,et al.  Compatibility Issues Between Electrodes and Electrolytes in Solid-State Batteries , 2017 .

[51]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[52]  Yayuan Liu,et al.  Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. , 2017, Nano letters.

[53]  Yue Cao,et al.  In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes , 2017 .

[54]  Li Lu,et al.  A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries , 2017 .

[55]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[56]  Hong‐Jie Peng,et al.  Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries , 2017 .

[57]  Yong‐Mook Kang,et al.  Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery , 2017 .

[58]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[59]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[60]  Jun Lu,et al.  Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid‐State Sodium‐Ion Batteries , 2017, Advanced materials.

[61]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[62]  Yan Xu,et al.  Liquid‐Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution , 2017, Advanced materials.

[63]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[64]  S. Choudhury,et al.  Designer interphases for the lithium-oxygen electrochemical cell , 2017, Science Advances.

[65]  Jie Xiao,et al.  Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications , 2017, Advanced science.

[66]  K. Uosaki,et al.  Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries , 2017 .

[67]  Zhenan Bao,et al.  Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. , 2017, Journal of the American Chemical Society.

[68]  Chilin Li,et al.  Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries. , 2017, ACS applied materials & interfaces.

[69]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[70]  Hui Wu,et al.  Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium Metal Anode. , 2017, ACS applied materials & interfaces.

[71]  Ming Liu,et al.  Recent innovative configurations in high-energy lithium–sulfur batteries , 2017 .

[72]  T. Shiga,et al.  Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries , 2017 .

[73]  Yizhou Zhu,et al.  Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode , 2017, Advanced science.

[74]  Boyang Liu,et al.  A carbon-based 3D current collector with surface protection for Li metal anode , 2017, Nano Research.

[75]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[76]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[77]  S. Choudhury,et al.  Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes , 2017, Advanced materials.

[78]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[79]  Yayuan Liu,et al.  Sulfiphilic Nickel Phosphosulfide Enabled Li2S Impregnation in 3D Graphene Cages for Li–S Batteries , 2017, Advanced materials.

[80]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[81]  Haijiao Zhang,et al.  Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery , 2017 .

[82]  Peng Gao,et al.  Li metal coated with amorphous Li 3 PO 4 via magnetron sputtering for stable and long-cycle life lithium metal batteries , 2017 .

[83]  M. Bazant,et al.  A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm−2 observed in situ in a capillary cell , 2017 .

[84]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[85]  Feixiang Wu,et al.  Conversion cathodes for rechargeable lithium and lithium-ion batteries , 2017 .

[86]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[87]  L. Archer,et al.  Regulating Li deposition at artificial solid electrolyte interphases , 2017 .

[88]  Jingyi Yang,et al.  Pretreatment of Lithium Surface by Using Iodic Acid (HIO3) To Improve Its Anode Performance in Lithium Batteries. , 2017, ACS applied materials & interfaces.

[89]  Xuanxuan Bi,et al.  Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. , 2017, ACS applied materials & interfaces.

[90]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[91]  Hongkyung Lee,et al.  Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer. , 2017, ACS applied materials & interfaces.

[92]  Yong‐Sheng Hu,et al.  Novel Concentrated Li[(FSO2)(n-C4F9SO2)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. , 2017, ACS applied materials & interfaces.

[93]  Wei Liu,et al.  Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes , 2017, ACS central science.

[94]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[95]  A. Manthiram,et al.  Dendrite‐Free Lithium Anode via a Homogenous Li‐Ion Distribution Enabled by a Kimwipe Paper , 2017 .

[96]  M. G. Park,et al.  Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives , 2017, Advanced materials.

[97]  M. Bazant,et al.  Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams , 2017 .

[98]  Jianchao Sun,et al.  Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes , 2017, Science Advances.

[99]  Adam P. Cohn,et al.  Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. , 2017, Nano letters.

[100]  Yayuan Liu,et al.  Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries , 2017, Proceedings of the National Academy of Sciences.

[101]  Henghui Xu,et al.  Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[102]  Roland Zengerle,et al.  Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography , 2017 .

[103]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[104]  P. Balbuena,et al.  Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces , 2017 .

[105]  Z. Wen,et al.  Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte , 2017 .

[106]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[107]  Yu-Ting Weng,et al.  A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries. , 2017, Chemical communications.

[108]  T. Zhao,et al.  First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries. , 2017, ACS applied materials & interfaces.

[109]  S. Wunder,et al.  Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries , 2017 .

[110]  Ya‐Xia Yin,et al.  Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping , 2016, Advanced science.

[111]  T. Rojo,et al.  Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy , 2016, Advanced science.

[112]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[113]  Xin-bo Zhang,et al.  Progress of Rechargeable Lithium Metal Batteries Based on Conversion Reactions , 2017 .

[114]  Venkat Srinivasan,et al.  Effect of initial state of lithium on the propensity for dendrite formation: A theoretical study , 2017 .

[115]  W. Liu,et al.  Extending the Life of Lithium‐Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator , 2017, Advanced materials.

[116]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[117]  L. Nazar,et al.  Interwoven MXene Nanosheet/Carbon‐Nanotube Composites as Li–S Cathode Hosts , 2017, Advanced materials.

[118]  Ya‐Xia Yin,et al.  Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. , 2016, Journal of the American Chemical Society.

[119]  Ji‐Guang Zhang,et al.  Enabling room temperature sodium metal batteries , 2016 .

[120]  K. Ng,et al.  A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries , 2016 .

[121]  V. Wood,et al.  Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators. , 2016, ACS applied materials & interfaces.

[122]  Zhenan Bao,et al.  High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating , 2016 .

[123]  Dingchang Lin,et al.  Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. , 2016, Journal of the American Chemical Society.

[124]  Xueping Gao,et al.  Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery. , 2016, ACS applied materials & interfaces.

[125]  B. Scrosati,et al.  Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries , 2016 .

[126]  Xi Chen,et al.  Mastering the interface for advanced all-solid-state lithium rechargeable batteries , 2016, Proceedings of the National Academy of Sciences.

[127]  N. Imanishi,et al.  Surface Layer and Morphology of Lithium Metal Electrodes , 2016 .

[128]  Chaohe Xu,et al.  Lithium Salt Inclusion as a Strategy for Improving the Li+ Conductivity of Nafion Membranes in Aprotic Systems , 2016 .

[129]  Hongsen Li,et al.  An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials , 2016 .

[130]  Xin-Bing Cheng,et al.  Nanostructured energy materials for electrochemical energy conversion and storage: A review , 2016 .

[131]  C. Li,et al.  A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries , 2016 .

[132]  D. A. D. Corte,et al.  Microsized Sn as Advanced Anodes in Glyme‐Based Electrolyte for Na‐Ion Batteries , 2016, Advanced materials.

[133]  Kyusung Park,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[134]  Sen Xin,et al.  Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries , 2016, Advanced materials.

[135]  A. Manthiram,et al.  A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries. , 2016, ACS nano.

[136]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[137]  Kai Xie,et al.  Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes , 2016 .

[138]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[139]  Kevin N. Wood,et al.  Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy , 2016, ACS central science.

[140]  J. Tu,et al.  In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode , 2016 .

[141]  Jie Xiao,et al.  Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems , 2016 .

[142]  Hong‐Jie Peng,et al.  Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. , 2016, Angewandte Chemie.

[143]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[144]  C. Li,et al.  A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes , 2016 .

[145]  Kaiming Liao,et al.  A long-life lithium ion oxygen battery based on commercial silicon particles as the anode , 2016 .

[146]  A. Manthiram,et al.  A core–shell electrode for dynamically and statically stable Li–S battery chemistry , 2016 .

[147]  Wu Xu,et al.  The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries , 2016, Scientific Reports.

[148]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[149]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[150]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[151]  Liyi Shi,et al.  Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators , 2016 .

[152]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[153]  Jae‐Hun Kim,et al.  Few-Layer Graphene Island Seeding for Dendrite-Free Li Metal Electrodes. , 2016, ACS applied materials & interfaces.

[154]  Meng Liu,et al.  Li2O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode. , 2016, ACS applied materials & interfaces.

[155]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[156]  K. Yuan,et al.  Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. , 2016, ACS applied materials & interfaces.

[157]  M. Naebe,et al.  A review of recent developments in rechargeable lithium-sulfur batteries. , 2016, Nanoscale.

[158]  B. El-Zahab,et al.  Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications , 2016 .

[159]  K. Yuan,et al.  Safe and flexible ion gel based composite electrolyte for lithium batteries , 2016 .

[160]  Lan Zhou,et al.  Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst , 2016, Scientific Reports.

[161]  Geping Yin,et al.  Understanding undesirable anode lithium plating issues in lithium-ion batteries , 2016 .

[162]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[163]  Linda F. Nazar,et al.  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes , 2016, Nature Energy.

[164]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[165]  Jin Yi,et al.  A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety. , 2016, ChemSusChem.

[166]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[167]  Liquan Chen,et al.  Controlled deposition of Li metal , 2016 .

[168]  Hong‐Jie Peng,et al.  3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High‐Sulfur‐Loading Lithium–Sulfur Batteries , 2016 .

[169]  Hubert A. Gasteiger,et al.  Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries , 2016 .

[170]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[171]  J. Goodenough,et al.  Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in Lithium–Sulfur Battery , 2016 .

[172]  Chongwu Zhou,et al.  A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life , 2016, Nano Research.

[173]  Yayuan Liu,et al.  All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. , 2016, Journal of the American Chemical Society.

[174]  Jinwang Tan,et al.  Computational study of electro-convection effects on dendrite growth in batteries , 2016 .

[175]  Young-Su Lee,et al.  Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte. , 2016, Physical chemistry chemical physics : PCCP.

[176]  Hongkyung Lee,et al.  Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries , 2016, Scientific Reports.

[177]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[178]  A. Dolocan,et al.  K+ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase , 2016 .

[179]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[180]  H. Le,et al.  Insights into degradation of metallic lithium electrodes protected by a bilayer solid electrolyte based on aluminium substituted lithium lanthanum titanate in lithium-air batteries , 2016 .

[181]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[182]  L. Archer,et al.  Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions , 2016, Science Advances.

[183]  Ji‐Guang Zhang,et al.  Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes , 2016 .

[184]  Z. Wen,et al.  Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. , 2016, ACS applied materials & interfaces.

[185]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[186]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[187]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[188]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[189]  Jingze Li,et al.  Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery. , 2016, ACS applied materials & interfaces.

[190]  Yi Cui,et al.  Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration , 2016, Nature Communications.

[191]  Yong‐Sheng Hu,et al.  Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes* , 2016 .

[192]  Myung-Hyun Ryou,et al.  Micro‐Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium‐Ion Batteries , 2016 .

[193]  Xiangbo Meng,et al.  Atomic Layer Deposition of LixAlyS Solid‐State Electrolytes for Stabilizing Lithium‐Metal Anodes , 2016 .

[194]  Tingzheng Hou,et al.  Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. , 2016, Small.

[195]  Changhong Liu,et al.  The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. , 2016, Nanoscale.

[196]  Feng Wu,et al.  Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte , 2016 .

[197]  M. Oschatz,et al.  Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. , 2016, Chemistry.

[198]  Eunkyoung Kim,et al.  Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders. , 2016, ACS applied materials & interfaces.

[199]  Xueliang Sun,et al.  From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities , 2016 .

[200]  Ruopian Fang,et al.  3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries , 2016, Advanced materials.

[201]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[202]  Jian Zhu,et al.  Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. , 2016, Nano letters.

[203]  Z. Wen,et al.  Influence of a surface modified Li anode on the electrochemical performance of Li–S batteries , 2016 .

[204]  L. Archer,et al.  Stable Artificial Solid Electrolyte Interphases for Lithium Batteries , 2016, 1604.04200.

[205]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[206]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[207]  B. Polzin,et al.  Lithium Metal Batteries: Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High‐Concentration Electrolyte Layer (Adv. Energy Mater. 8/2016) , 2016 .

[208]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[209]  Xingguo Qi,et al.  Improved Cycling Stability of Lithium‐Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide , 2016 .

[210]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[211]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[212]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[213]  Peng Lu,et al.  Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components , 2016 .

[214]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[215]  Xueping Gao,et al.  Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery. , 2016, ACS applied materials & interfaces.

[216]  Tao Zhang,et al.  Lithium-Air Batteries with Hybrid Electrolytes. , 2016, The journal of physical chemistry letters.

[217]  Fernando A. Soto,et al.  Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces , 2016, 1605.07142.

[218]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[219]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[220]  H. Porthault,et al.  Electrodeposition of lithium metal thin films and its application in all-solid-state microbatteries , 2016 .

[221]  K. Ng,et al.  Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries. , 2016, Chemical communications.

[222]  Byung Gon Kim,et al.  A Moisture‐ and Oxygen‐Impermeable Separator for Aprotic Li‐O2 Batteries , 2016 .

[223]  O. Borodin,et al.  Natural abundance 17 O, 6 Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes , 2016 .

[224]  N. Togasaki,et al.  Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery , 2016 .

[225]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[226]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[227]  A. Dolocan,et al.  Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries , 2016 .

[228]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[229]  M. Verbrugge,et al.  Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. , 2016, Nano letters.

[230]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[231]  Tong Cui,et al.  Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries. , 2016, Angewandte Chemie.

[232]  Jiulin Wang,et al.  A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries , 2016, Scientific Reports.

[233]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[234]  Deyu Wang,et al.  Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes , 2016 .

[235]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.

[236]  S. Choudhury,et al.  Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities , 2016 .

[237]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[238]  J. Tu,et al.  Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries , 2016 .

[239]  Yuegang Zhang,et al.  Chemical routes toward long-lasting lithium/sulfur cells , 2016, Nano Research.

[240]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[241]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[242]  J. Muldoon,et al.  A soft, multilayered lithium–electrolyte interface , 2016 .

[243]  Zhe Yuan,et al.  Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. , 2016, Nano letters.

[244]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[245]  Xin-Bing Cheng,et al.  Janus Separator of Polypropylene‐Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries , 2015, Advanced science.

[246]  Xiulin Fan,et al.  “Water‐in‐Salt” Electrolyte Enables High‐Voltage Aqueous Lithium‐Ion Chemistries. , 2016 .

[247]  Hong Li,et al.  Lithium-ion transport in inorganic solid state electrolyte , 2015 .

[248]  H. Matsumoto,et al.  Effect of Charge Transfer Resistance on Morphology of Lithium Electrodeposited in Ionic Liquid , 2016 .

[249]  S. Dillon,et al.  In Situ Scanning Electron Microscopy Characterization of the Mechanism for Li Dendrite Growth , 2016 .

[250]  Kim F. Ferris,et al.  Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries , 2016 .

[251]  Qiang Zhang,et al.  CaO‐Templated Growth of Hierarchical Porous Graphene for High‐Power Lithium–Sulfur Battery Applications , 2016 .

[252]  B. Liu,et al.  Enhanced Cycling Stability of Rechargeable Li–O2 Batteries Using High‐Concentration Electrolytes , 2016 .

[253]  Electrochemical properties of a ceramic-polymer-composite-solid electrolyte for Li-ion batteries , 2016 .

[254]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[255]  Ruopian Fang,et al.  A trilayer separator with dual function for high performance lithium–sulfur batteries , 2016 .

[256]  Peng Lu,et al.  Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth , 2016 .

[257]  Hong‐Jie Peng,et al.  Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. , 2016, Small.

[258]  Y. Iriyama,et al.  Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces , 2016 .

[259]  Lei Chen,et al.  Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model , 2015 .

[260]  J. Park,et al.  Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlCl₄-2SO₂ Inorganic Electrolyte. , 2015, ACS applied materials & interfaces.

[261]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[262]  Alexej Jerschow,et al.  Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ⁷Li MRI. , 2015, Journal of the American Chemical Society.

[263]  Fernando A. Soto,et al.  Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries , 2015 .

[264]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[265]  Karsten Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[266]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[267]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[268]  J. Goodenough Energy storage materials: A perspective , 2015 .

[269]  Xin-bo Zhang,et al.  Recent Progress on Stability Enhancement for Cathode in Rechargeable Non‐Aqueous Lithium‐Oxygen Battery , 2015 .

[270]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[271]  J. Tu,et al.  High-energy cathode materials for Li-ion batteries: A review of recent developments , 2015 .

[272]  Eric C Evarts Lithium batteries: To the limits of lithium , 2015, Nature.

[273]  Zhengyuan Tu,et al.  Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. , 2015, Accounts of chemical research.

[274]  Ji‐Guang Zhang,et al.  Enhanced performance of Li|LiFePO 4 cells using CsPF 6 as an electrolyte additive , 2015 .

[275]  S. Hirano,et al.  TiO 2 -based ionogel electrolytes for lithium metal batteries , 2015 .

[276]  Dong‐Won Kim,et al.  Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety , 2015 .

[277]  Yuliang Cao,et al.  A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[278]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[279]  Rohan Akolkar,et al.  Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive , 2015 .

[280]  Luhua Jiang,et al.  Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries , 2015 .

[281]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[282]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[283]  W. Goddard,et al.  Annealing kinetics of electrodeposited lithium dendrites. , 2015, The Journal of chemical physics.

[284]  Hongkyung Lee,et al.  Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes , 2015, Scientific Reports.

[285]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[286]  Young‐Jun Kim,et al.  Conductive porous carbon film as a lithium metal storage medium , 2015 .

[287]  Hongjiu Hu,et al.  Analysis of lithium ion concentration and stress in the solid electrolyte interphase on the graphite anode. , 2015, Physical chemistry chemical physics : PCCP.

[288]  T. Ishihara,et al.  Lithium Depletion and the Rechargeability of Li–O2 Batteries in Ether and Carbonate Electrolytes , 2015 .

[289]  Xiao‐Qing Yang,et al.  Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries. , 2015, ACS applied materials & interfaces.

[290]  Frank Y. Fan,et al.  Mechanism and Kinetics of Li2S Precipitation in Lithium–Sulfur Batteries , 2015, Advanced materials.

[291]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries , 2015, Advanced materials.

[292]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[293]  Kun Fu,et al.  A Thermally Conductive Separator for Stable Li Metal Anodes. , 2015, Nano letters.

[294]  Jie Xiao,et al.  Understanding the Lithium Sulfur Battery System at Relevant Scales , 2015 .

[295]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[296]  Jianming Zheng,et al.  High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes , 2015 .

[297]  Yifu Yang,et al.  Substrate effects on Li(+) electrodeposition in Li secondary batteries with a competitive kinetics model. , 2015, Physical chemistry chemical physics : PCCP.

[298]  Arumugam Manthiram,et al.  Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge , 2015, Nature Communications.

[299]  Jung-Ki Park,et al.  Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries , 2015 .

[300]  Ji‐Guang Zhang,et al.  Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive , 2015 .

[301]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[302]  Rui Zhang,et al.  Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. , 2015, ACS nano.

[303]  Xueping Gao,et al.  Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery , 2015 .

[304]  Lin Ma,et al.  Nanomaterials: Science and applications in the lithium–sulfur battery , 2015 .

[305]  A. Manthiram,et al.  Ambient‐Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber‐Activated Carbon Composite Electrode , 2015 .

[306]  Russel Fernandes,et al.  The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. , 2015, Nature chemistry.

[307]  S. Koch,et al.  Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes , 2015, 1505.07985.

[308]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[309]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[310]  D. Steingart,et al.  Hyper-dendritic nanoporous zinc foam anodes , 2015 .

[311]  Xuanxuan Bi,et al.  Investigating dendrites and side reactions in sodium-oxygen batteries for improved cycle lives. , 2015, Chemical communications.

[312]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[313]  Hubert A. Gasteiger,et al.  Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling , 2015 .

[314]  Zhengyuan Tu,et al.  Stable lithium electrodeposition in salt-reinforced electrolytes , 2015 .

[315]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[316]  Qiang Zhang,et al.  Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries , 2015 .

[317]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[318]  S. Hirano,et al.  Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries , 2015 .

[319]  W. Goddard,et al.  Thermal relaxation of lithium dendrites. , 2015, Physical chemistry chemical physics : PCCP.

[320]  J. Tu,et al.  An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries , 2015 .

[321]  Arumugam Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[322]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[323]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[324]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[325]  Jun Lu,et al.  Demonstration of highly efficient lithium–sulfur batteries , 2015 .

[326]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[327]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[328]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[329]  Bruno Scrosati,et al.  The Lithium/Air Battery: Still an Emerging System or a Practical Reality? , 2015, Advanced materials.

[330]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[331]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[332]  Yuki Yamada,et al.  Review—Superconcentrated Electrolytes for Lithium Batteries , 2015 .

[333]  Zhan Lin,et al.  Lithium-Sulfur Batteries: from Liquid to Solid Cells? , 2015 .

[334]  G. Suppes,et al.  Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries , 2015 .

[335]  M. Winter,et al.  Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries , 2015 .

[336]  K. Geng,et al.  Prospects for Dendrite-Free Cycling of Li Metal Batteries , 2015 .

[337]  Yukihiro Okuno,et al.  Near-Shore Aggregation Mechanism of Electrolyte Decomposition Products to Explain Solid Electrolyte Interphase Formation , 2015 .

[338]  Feng Li,et al.  A Flexible Sulfur‐Graphene‐Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries , 2015, Advanced materials.

[339]  M. Whittingham,et al.  Effects of Pulse Plating on lithium electrodeposition, morphology and cycling efficiency , 2014 .

[340]  Aniruddha Jana,et al.  Phase field kinetics of lithium electrodeposits , 2014 .

[341]  Xizhong Wang,et al.  Morphology control of zinc regeneration for zinc–air fuel cell and battery , 2014 .

[342]  Jiulin Wang,et al.  Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility , 2014 .

[343]  K. Tadanaga,et al.  Preparation of Li 3 BO 3 -Li 2 SO 4 glass-ceramic electrolytes for all-oxide lithium batteries , 2014 .

[344]  Karen E. Swider-Lyons,et al.  Observation of Lithium Dendrites at Ambient Temperature and Below , 2014 .

[345]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[346]  Yu‐Guo Guo,et al.  Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. , 2014, ACS applied materials & interfaces.

[347]  J. Tu,et al.  Magnetron sputtering amorphous carbon coatings on metallic lithium: Towards promising anodes for lithium secondary batteries , 2014 .

[348]  A. Gross,et al.  Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. , 2014, The Journal of chemical physics.

[349]  Hong‐Jie Peng,et al.  Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. , 2014, Small.

[350]  Michael R Hoffmann,et al.  Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. , 2014, Physical chemistry chemical physics : PCCP.

[351]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[352]  Guoqiang Ma,et al.  Enhanced cycle performance of a Li–S battery based on a protected lithium anode , 2014 .

[353]  Guoqiang Ma,et al.  A lithium anode protection guided highly-stable lithium-sulfur battery. , 2014, Chemical communications.

[354]  Jens Tübke,et al.  Cell energy density and electrolyte/sulfur ratio in Li–S cells , 2014 .

[355]  Hui Wu,et al.  Improving battery safety by early detection of internal shorting with a bifunctional separator , 2014, Nature Communications.

[356]  Zhe Yuan,et al.  Hierarchical Free‐Standing Carbon‐Nanotube Paper Electrodes with Ultrahigh Sulfur‐Loading for Lithium–Sulfur Batteries , 2014 .

[357]  Jiulin Wang,et al.  Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. , 2014, Angewandte Chemie.

[358]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[359]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[360]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[361]  Byung Gon Kim,et al.  A Lithium‐Sulfur Battery with a High Areal Energy Density , 2014 .

[362]  Jun Lu,et al.  An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. , 2014, ACS applied materials & interfaces.

[363]  M. Winter,et al.  Using Polyisobutylene as a Non-Fluorinated Binder for Coated Lithium Powder (CLiP) Electrodes , 2014 .

[364]  Reiner Mönig,et al.  Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution , 2014 .

[365]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[366]  Jinghua Guo,et al.  High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. , 2014, Nano letters.

[367]  Arumugam Manthiram,et al.  Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries. , 2014, The journal of physical chemistry letters.

[368]  Weikun Wang,et al.  Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery , 2014 .

[369]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[370]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[371]  Jiulin Wang,et al.  TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. , 2014, Chemical Communications.

[372]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[373]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[374]  William A Goddard,et al.  Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. , 2014, The journal of physical chemistry letters.

[375]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[376]  N. Koratkar,et al.  Defect-induced plating of lithium metal within porous graphene networks , 2014, Nature Communications.

[377]  M. Winter,et al.  Coated Lithium Powder (CLiP) Electrodes for Lithium‐Metal Batteries , 2014 .

[378]  H. Xin,et al.  Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. , 2014, Nano letters.

[379]  Yuki Yamada,et al.  Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[380]  Joseph F. Parker,et al.  Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling , 2014 .

[381]  Yuyan Shao,et al.  Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism , 2014 .

[382]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[383]  Ilke Arslan,et al.  Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. , 2014, Chemical communications.

[384]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[385]  Dongmin Im,et al.  A Highly Reversible Lithium Metal Anode , 2014, Scientific Reports.

[386]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[387]  Rohan Akolkar,et al.  Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature , 2014 .

[388]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[389]  Jianming Zheng,et al.  Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures , 2014, Nature Communications.

[390]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[391]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[392]  T. Ishihara,et al.  Surface Coating Layer on Li Metal for Increased Cycle Stability of Li–O2 Batteries , 2014 .

[393]  D. J. Lee,et al.  Enhanced cycling performance of lithium metal secondary batteries with succinic anhydride as an electrolyte additive , 2014 .

[394]  N. Imanishi,et al.  Ta-Doped Li7La3Zr2O12 for Water-Stable Lithium Electrode of Lithium-Air Batteries , 2014 .

[395]  Christopher J. Ellison,et al.  Low-cost, dendrite-blocking polymer-Sb2O3 separators for lithium and sodium batteries , 2014 .

[396]  J. Newman,et al.  Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator , 2014 .

[397]  Hiroshi Senoh,et al.  Effect of Current Density on Morphology of Lithium Electrodeposited in Ionic Liquid-Based Electrolytes , 2014 .

[398]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[399]  Johanna K. Goodman,et al.  Effect of Alkali and Alkaline Earth Metal Salts on Suppression of Lithium Dendrites , 2014 .

[400]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[401]  Liquan Chen,et al.  Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. , 2014, Faraday discussions.

[402]  Yang‐Kook Sun,et al.  Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode , 2013 .

[403]  M. Sun,et al.  Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration , 2013, Scientific Reports.

[404]  J. Sakamoto,et al.  Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications , 2013 .

[405]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[406]  Yugang Sun Lithium ion conducting membranes for lithium-air batteries , 2013 .

[407]  Philipp Adelhelm,et al.  A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. , 2013, Physical chemistry chemical physics : PCCP.

[408]  Arumugam Manthiram,et al.  Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. , 2013, Angewandte Chemie.

[409]  Rohan Akolkar,et al.  Mathematical model of the dendritic growth during lithium electrodeposition , 2013 .

[410]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[411]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[412]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[413]  K. Edström,et al.  The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li–O2 battery , 2013 .

[414]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[415]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[416]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[417]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[418]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[419]  Rohan Akolkar,et al.  Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive , 2013 .

[420]  David R. Ely,et al.  Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes , 2013 .

[421]  N. Balsara,et al.  Lithium Metal Stability in Batteries with Block Copolymer Electrolytes , 2013 .

[422]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[423]  D. Macfarlane,et al.  Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte , 2013 .

[424]  P. Kohl,et al.  Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium , 2013 .

[425]  Thomas F. Miller,et al.  Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries , 2012 .

[426]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[427]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[428]  J. Maier,et al.  Ionic space charge effects in lithium fluoride thin films , 2012 .

[429]  Li-Jun Wan,et al.  Nanocarbon networks for advanced rechargeable lithium batteries. , 2012, Accounts of chemical research.

[430]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[431]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[432]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[433]  C. Ling,et al.  Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology , 2012 .

[434]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[435]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[436]  Hong Li,et al.  Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. , 2012, Nano letters.

[437]  G. Stucky,et al.  Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition , 2012 .

[438]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[439]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[440]  Adri C. T. van Duin,et al.  Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study , 2011 .

[441]  Yasuhiro Fukunaka,et al.  Li dendrite growth and Li+ ionic mass transfer phenomenon , 2011 .

[442]  J. Douglade,et al.  Influence of tartaric acid on zinc electrodeposition from sulphate bath , 2011 .

[443]  Tao Zhang,et al.  Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li , 2011 .

[444]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[445]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[446]  Sehee Lee,et al.  Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. , 2011, Journal of the American Chemical Society.

[447]  Jou-Hyeon Ahn,et al.  Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte , 2011 .

[448]  John P. Sullivan,et al.  Lithium Fiber Growth on the Anode in a Nanowire Lithium Ion Battery During Charging , 2011 .

[449]  Marshall C. Smart,et al.  13C Solid State NMR Suggests Unusual Breakdown Products in SEI Formation on Lithium Ion Electrodes , 2011 .

[450]  Lijuan Song,et al.  Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study , 2011 .

[451]  W. Hung,et al.  Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. , 2011, Chemical communications.

[452]  Jiulin Wang,et al.  Study of electronic effect of Grignard reagents on their electrochemical behavior , 2010 .

[453]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[454]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[455]  Ji‐Guang Zhang,et al.  High Capacity Pouch-Type Li-Air Batteries Operated in Ambient Condition , 2010 .

[456]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[457]  Wu Xu,et al.  High Capacity Pouch-Type Li–Air Batteries , 2010 .

[458]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[459]  H. Sakaebe,et al.  Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based , 2010 .

[460]  M. Matsui Study on electrochemically deposited Mg metal , 2010 .

[461]  Kang Xu,et al.  Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[462]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[463]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[464]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[465]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[466]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[467]  Dennis W. Dees,et al.  Morphological Transitions on Lithium Metal Anodes , 2009 .

[468]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[469]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[470]  Min Gyu Kim,et al.  Reversible and High‐Capacity Nanostructured Electrode Materials for Li‐Ion Batteries , 2009 .

[471]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[472]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[473]  P. Bruce,et al.  Rechargeable Lithium Batteries: Going The Extra Mile , 2008 .

[474]  Bok Ki Kim,et al.  The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode , 2008 .

[475]  T. Abe,et al.  Suppression of dendritic lithium formation by using concentrated electrolyte solutions , 2008 .

[476]  W. Yoon,et al.  The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries , 2008 .

[477]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[478]  Oleg Borodin,et al.  Molecular dynamics simulations of lithium alkyl carbonates. , 2006, The journal of physical chemistry. B.

[479]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[480]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[481]  X. Xia,et al.  Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes. , 2005, Analytical chemistry.

[482]  M. Ishikawa,et al.  Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability , 2005 .

[483]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[484]  W. Yoon,et al.  Surface characterization of emulsified lithium powder electrode , 2004 .

[485]  W. Yoon,et al.  Improvement in lithium cycling efficiency by using lithium powder anode , 2004 .

[486]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[487]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[488]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[489]  Ralph E. White,et al.  Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells , 2004 .

[490]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[491]  John Newman,et al.  A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase , 2004 .

[492]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[493]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[494]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[495]  T. Abe,et al.  In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures , 2002 .

[496]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[497]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[498]  M. Rosso,et al.  Viscosity Effects in Thin-Layer Electrodeposition , 2001 .

[499]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[500]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[501]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[502]  Jean-Marie Tarascon,et al.  In situ SEM study of the interfaces in plastic lithium cells , 1999 .

[503]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[504]  D. Aurbach,et al.  X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions , 1999 .

[505]  Koichi Tanaka,et al.  Electron Spin Resonance Study of the Electrochemical Reduction of Electrolyte Solutions for Lithium Secondary Batteries , 1998 .

[506]  S. Mu,et al.  Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery , 1998 .

[507]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[508]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[509]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[510]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[511]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[512]  Huth,et al.  Role of convection in thin-layer electrodeposition. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[513]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[514]  J. Yamaki,et al.  Influence of Electrolyte on Lithium Cycling Efficiency with Pressurized Electrode Stack , 1994 .

[515]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[516]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[517]  B. Sapoval,et al.  The role of the anions in the growth speed of fractal electrodeposits , 1990 .

[518]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[519]  Doron Aurbach,et al.  The electrochemical behavior of selected polar aprotic systems , 1989 .

[520]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[521]  J. Kennedy,et al.  Further Characterization of SiS2 ‐ Li2 S Glasses Doped with Lithium Halide , 1988 .

[522]  Bunde,et al.  Dispersed ionic conductors and percolation theory. , 1985, Physical review letters.

[523]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[524]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[525]  N. Ibl Some theoretical aspects of pulse electrolysis , 1980 .

[526]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[527]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[528]  J. L. Ballif,et al.  Lithium literature review: lithium's properties and interactions , 1978 .

[529]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[530]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[531]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[532]  B. Taylor,et al.  New solid ionic conductors , 1977 .

[533]  B. Boukamp,et al.  Lithium ion conductivity in lithium nitride , 1976 .

[534]  R Satter,et al.  Effects of Light-Dark Cycles , 1976, Science.

[535]  K. Boto Organic additives in zinc electroplating , 1975 .

[536]  C. Liang Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .

[537]  A. Despić,et al.  The effect of pulsating potential on the morphology of metal deposits obtained by mass-transport controlled electrodeposition , 1971 .

[538]  Z. A. Munir,et al.  The Equilibrium and Free Surface Sublimation Pressures of Oriented Single Crystals of Bismuth Telluride , 1970 .

[539]  J. O'm. Bockris,et al.  The Mechanism of the Dendritic Electrocrystallization of Zinc , 1969 .

[540]  K. Blurton,et al.  Controlled Current Deposition of Zinc from Alkaline Solution , 1969 .

[541]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[542]  H. J. Sand III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid , 1901 .