Continuing challenges in the parametrization of intermolecular force fields. Towards an accurate description of electrostatic and induction terms

The improvement in the description of molecular liquids by statistical mechanics simulations, going beyond the limitations of the pairwise additive approximation, has triggered the development of novel approaches for the design of tractable and reliable sets of electrostatic and induction parameters. Progress made in this direction over the past years is reviewed with an emphasis on the underlying theory of the formalism utilized. Generation of the models of distributed multipoles and polarizabilities relies upon the knowledge of the electrostatic potential and the induction energy mapped on a grid of points around the molecule. Exploitation of the symmetry and the transferability properties of the latter is achieved by means of local atomic frames of reference, which allow the distributed components to be expressed in a simple and compact form. Investigation of the prototypical cases of benzene and naphthalene illustrates the robustness of the methodology for the reproduction of electrostatic and induction interaction energies.

[1]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[2]  Modesto Orozco,et al.  Response to "Comment on `New strategies to incorporate the solvent polarization in self-consistent reaction field and free-energy perturbation simulations' " [J. Chem. Phys. 107, 1291 (1997)] , 1997 .

[3]  A. Stone,et al.  Practical schemes for distributed polarizabilities , 1993 .

[4]  A. Stone,et al.  Localization methods for distributed polarizabilities , 1994 .

[5]  I. Alkorta,et al.  The induced polarization of the water molecule , 1994 .

[6]  B. Berne,et al.  Molecular Dynamics Calculation of the Effect of Solvent Polarizability on the Hydrophobic Interaction , 1995 .

[7]  E. M. Evleth,et al.  Critical analysis of electric field modeling: Formamide , 1992 .

[8]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[9]  Claude Millot,et al.  OPEP: A tool for the optimal partitioning of electric properties , 2003, J. Comput. Chem..

[10]  Robert R. Birge,et al.  Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion , 1980 .

[11]  Christophe Chipot,et al.  A comprehensive approach to molecular charge density models: From distributed multipoles to fitted atomic charges , 1994 .

[12]  Claude Millot,et al.  Alternative Approaches for the Calculation of Induction Energies: Characterization, Effectiveness, and Pitfalls , 2001 .

[13]  A. Stone The induction energy of an assembly of polarizable molecules , 1989 .

[14]  W. Andrzej Sokalski,et al.  Cumulative multicenter multipole moment databases and their applications , 1992 .

[15]  J. A. Barker Statistical mechanics of interacting dipoles , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[17]  Modesto Orozco,et al.  Semiclassical-Continuum Approach to the Electrostatic Free Energy of Solvation , 1997 .

[18]  F. Javier Luque,et al.  Fast evaluation of induction energies: a second-order perturbation theory approach , 2000 .

[19]  Christopher A. Hunter,et al.  Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[20]  J. Ángyán,et al.  Topologically partitioned dynamic polarizabilities using the theory of atoms in molecules , 1996 .

[21]  Bernard Pullman,et al.  Intermolecular interactions, from diatomics to biopolymers , 1978 .

[22]  Paul L. A. Popelier,et al.  Convergence of the multipole expansion for electrostatic potentials of finite topological atoms , 2000 .

[23]  A. Bondi van der Waals Volumes and Radii , 1964 .

[24]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[25]  György G. Ferenczy,et al.  Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons , 1993 .

[26]  Peter A. Kollman,et al.  Ion solvation in polarizable water: molecular dynamics simulations , 1991 .

[27]  Intermolecular interaction energies by topologically partitioned electric properties. 1. Electrostatic and induction energies in one-centre and multicentre multipole expansions , 1996 .

[28]  F. Javier Luque,et al.  Polarization effects in generalized molecular interaction potential: New Hamiltonian for reactivity studies and mixed QM/MM calculations , 1998 .

[29]  C. Chipot,et al.  Distributed polarizabilities derived from induction energies: A finite perturbation approach , 2000 .

[30]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[31]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[32]  Christophe Chipot,et al.  Cation−π Interactions in Proteins: Can Simple Models Provide an Accurate Description? , 1999 .

[33]  Barry Robson,et al.  Intermolecular Interactions: from diatomics to biopolymers , 1978 .

[34]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[35]  Z. Maksić,et al.  Theoretical Models of Chemical Bonding , 1991 .

[36]  B. A. Hess,et al.  Intermolecular interaction energies by topologically partitioned electric properties II. Dispersion energies in one-centre and multicentre multipole expansions , 1997 .

[37]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[38]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[39]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[40]  György G. Ferenczy Charges derived from distributed multipole series , 1991 .

[41]  Modesto Orozco,et al.  New strategies to incorporate the solvent polarization in self‐consistent reaction field and free‐energy perturbation simulations , 1995 .

[42]  Paul L. A. Popelier,et al.  Atomic partitioning of molecular electrostatic potentials , 2000 .

[43]  Peter A. Kollman,et al.  Benzene Dimer: A Good Model for π−π Interactions in Proteins? A Comparison between the Benzene and the Toluene Dimers in the Gas Phase and in an Aqueous Solution , 1996 .

[44]  N. Kosugi,et al.  Polarized one-electron potentials fitted by multicenter polarizabilities and hyperpolarizabilities. Ab initio SCF-CI calculation of water , 1993 .

[45]  C. Chipot,et al.  Statistical analysis of distributed multipoles derived from molecular electrostatic potentials , 1998 .

[46]  E. M. Evleth,et al.  Conformationally invariant modeling of atomic charges , 1993 .

[47]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[48]  Zi-Min Lu,et al.  Phase space structure of triatomic molecules , 1997 .

[49]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[50]  János G. Ángyán Comment on “New strategies to incorporate the solvent polarization in self-consistent reaction field and free-energy perturbation simulations” [J. Chem. Phys. 103, 10183 (1995)] , 1997 .

[51]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[52]  C. Chipot,et al.  Effect of Polarizability on the Potential of Mean Force of Two Cations. The Guanidinium−Guanidinium Ion Pair in Water , 1997 .

[53]  Paul L. A. Popelier,et al.  Atom–atom partitioning of intramolecular and intermolecular Coulomb energy , 2001 .

[54]  H. Scheraga,et al.  Modeling amino acid side chains. 3. Influence of intra- and intermolecular environment on point charges , 1993 .

[55]  Christophe Chipot,et al.  Rational determination of charge distributions for free energy calculations , 2003, J. Comput. Chem..

[56]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[57]  A. Stone,et al.  Distributed dispersion: A new approach , 2003 .

[58]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[59]  Laurent Joubert,et al.  Convergence of the electrostatic interaction based on topological atoms , 2001 .

[60]  David M. Gange,et al.  Charges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials? , 1996 .

[61]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[62]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[63]  L. Sesé An application of the self-consistent variational effective potential against the path-integral to compute equilibrium properties of quantum simple fluids , 1999 .

[64]  H. Scheraga,et al.  Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides , 1994 .

[65]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[66]  Peter A. Kollman,et al.  Molecular Dynamics Potential of Mean Force Calculations: A Study of the Toluene−Ammonium π-Cation Interactions , 1996 .

[67]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[68]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[69]  A. Hese,et al.  High-resolution ultraviolet laser spectroscopy on jet-cooled benzene molecules: Ground and excited electronic state polarizabilities determined from static Stark effect measurements , 1999 .

[70]  S. Nakagawa Anisotropic contribution in multicenter polarizabilities and first hyperpolarizabilities. Ab initio MP2 calculations of acetylene, ethylene, ethane and benzene , 1995 .

[71]  S. Nakagawa Transferability in multicenter polarizabilities of alkanes and alcohols derived from ab initio polarized one-electron potentials , 1997 .

[72]  J. Applequist,et al.  An atom dipole interaction model for molecular optical properties , 1977 .

[73]  Christophe Chipot,et al.  Modeling amino acid side chains. 1. Determination of net atomic charges from ab initio self-consistent-field molecular electrostatic properties , 1992 .