Weighted Harary indices of apex trees and k-apex trees

If G is a connected graph, then H A ( G ) = ? u ? v ( deg ( u ) + deg ( v ) ) / d ( u , v ) is the additively Harary index and H M ( G ) = ? u ? v deg ( u ) deg ( v ) / d ( u , v ) the multiplicatively Harary index of G . G is an apex tree if it contains a vertex x such that G - x is a tree and is a k -apex tree if k is the smallest integer for which there exists a k -set X ? V ( G ) such that G - X is a tree. Upper and lower bounds on H A and H M are determined for apex trees and k -apex trees. The corresponding extremal graphs are also characterized in all the cases except for the minimum k -apex trees, k ? 3 . In particular, if k ? 2 and n ? 6 , then H A ( G ) ? ( k + 1 ) ( 3 n 2 - 5 n - k 2 - k + 2 ) / 2 holds for any k -apex tree G , equality holding if and only if G is the join of K k and K 1 , n - k - 1 .

[1]  J. Sedlar EXTREMAL UNICYCLIC GRAPHS WITH RESPECT TO ADDITIVELY WEIGHTED HARARY INDEX , 2013, 1306.4164.

[2]  Kinkar Chandra Das,et al.  Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..

[3]  Ivan Gutman,et al.  Selected properties of the Schultz molecular topological index , 1994, J. Chem. Inf. Comput. Sci..

[4]  Kexiang Xu,et al.  The Harary Index of a Graph , 2015 .

[5]  Hongbo Hua,et al.  On Harary Index and Traceable Graphs , 2013 .

[6]  Aleksandar Ili,et al.  CALCULATING THE DEGREE DISTANCE OF PARTIAL HAMMING GRAPHS , 2010 .

[7]  Ali Reza Ashrafi,et al.  Extremal Graphs with Respect to the Zagreb Coindices , 2011 .

[8]  Kexiang Xu,et al.  A Survey on Graphs Extremal with Respect to Distance-Based Topological Indices , 2014 .

[9]  Kexiang Xu,et al.  MAXIMAL HARARY INDEX OF UNICYCLIC GRAPHS WITH A GIVEN MATCHING NUMBER , 2013 .

[10]  Ali Reza Ashrafi,et al.  The Zagreb coindices of graph operations , 2010, Discret. Appl. Math..

[11]  Bolian Liu,et al.  The second Zagreb indices of unicyclic graphs with given degree sequences , 2014, Discret. Appl. Math..

[12]  Hanyuan Deng,et al.  Multiplicatively weighted Harary index of graphs , 2015, J. Comb. Optim..

[13]  Hanyuan Deng A Unified Approach to the Extremal Zagreb Indices for Trees, Unicyclic Graphs and Bicyclic Graphs 1 , 2007 .

[14]  Sandi Klavzar,et al.  Extremal (n, m)-Graphs with Respect to Distance-Degree-Based Topological Indices , 2014 .

[15]  Cun-Quan Zhang,et al.  Cliques, minors and apex graphs , 2009, Discret. Math..

[16]  Yaser Alizadeh,et al.  Additively weighted Harary index of some composite graphs , 2013, Discret. Math..

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Kinkar Chandra Das,et al.  On Harary index of graphs , 2011, Discret. Appl. Math..

[19]  Ovidiu Ivanciuc,et al.  Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices , 1993 .

[20]  Shenggui Zhang,et al.  On the reciprocal degree distance of graphs , 2012, Discret. Appl. Math..

[21]  Andrey A. Dobrynin,et al.  Degree Distance of a Graph: A Degree Analog of the Wiener Index , 1994, J. Chem. Inf. Comput. Sci..

[22]  Kexiang Xu,et al.  The Harary index of ordinary and generalized quasi-tree graphs , 2014 .

[23]  Bojan Mohar Apex graphs with embeddings of face-width three , 1997, Discret. Math..

[24]  Kexiang Xu Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index , 2013 .

[25]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[26]  Yaser Alizadeh,et al.  Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes , 2013 .

[27]  Elad Aigner-Horev Subdivisions in apex graphs , 2010 .

[28]  Kexiang Xu,et al.  The Zagreb indices of graphs with a given clique number , 2011, Appl. Math. Lett..

[29]  Ali Iranmanesh,et al.  Harary Index of Some Nano-Structures , 2014 .

[30]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[31]  Kexiang Xu,et al.  Maximizing the Zagreb indices of (n;m)-graphs 1 , 2014 .

[32]  Kinkar Chandra Das,et al.  Extremal t-apex trees with respect to matching energy , 2016, Complex..

[33]  Dejan Plavšić,et al.  Harary Matrices: Definitions, Properties and Applications , 2011 .

[34]  Kexiang Xu Trees with the seven smallest and eight greatest Harary indices , 2012, Discret. Appl. Math..

[35]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[36]  Liming Xiong,et al.  HARARY INDEX OF THE k-TH POWER OF A GRAPH , 2013 .

[37]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[38]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .