Fast Construction of the Fejér and Clenshaw–Curtis Quadrature Rules
暂无分享,去创建一个
[1] A. Stroud,et al. Nodes and Weights of Quadrature Formulas , 1965 .
[2] A. S. Kronrod,et al. Nodes and weights of quadrature formulas : sixteen-place tables , 1965 .
[3] Walter Gautschi,et al. Numerical Quadrature in the Presence of a Singularity , 1967 .
[4] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[5] W. Gentleman. Algorithm 424: Clenshaw-Curtis quadrature [D1] , 1972 .
[6] Jaroslav Kautsky,et al. Calculation of the weights of interpolatory quadratures , 1982 .
[7] Jaroslav Kautsky,et al. Algorithm 655: IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures , 1987, TOMS.
[8] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[9] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[10] Knut Petras,et al. Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.
[11] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[12] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..