Exploring the number of groups in robust model-based clustering
暂无分享,去创建一个
Luis Angel García-Escudero | Carlos Matrán | Agustín Mayo-Íscar | Alfonso Gordaliza | C. Matrán | A. Gordaliza | L. García-Escudero | A. Mayo-Íscar | A. Mayo‐Iscar
[1] M. Gallegos,et al. Trimming algorithms for clustering contaminated grouped data and their robustness , 2009, Adv. Data Anal. Classif..
[2] Alfonso Gordaliza Ramos,et al. A general trimming approach to robust cluster analysis , 2007 .
[3] David M. Rocke,et al. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator , 2004, Comput. Stat. Data Anal..
[4] Michael J. Symons,et al. Clustering criteria and multivariate normal mixtures , 1981 .
[5] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[6] Christian Hennig. Breakdown points for maximum likelihood-estimators of location-scale mixtures , 2002 .
[7] Graphical Detection of Regression Outliers and Mixtures , 1999 .
[8] E. Ziegel,et al. Proceedings in Computational Statistics , 1998 .
[9] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[10] Adrian E. Raftery,et al. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..
[11] H. Bock. Probabilistic models in cluster analysis , 1996 .
[12] Christian Hennig,et al. Validating visual clusters in large datasets: fixed point clusters of spectral features , 2002 .
[13] Luis Angel García-Escudero,et al. Trimming Tools in Exploratory Data Analysis , 2003 .
[14] Gérard Govaert,et al. Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Catherine A. Sugar,et al. Finding the Number of Clusters in a Dataset , 2003 .
[16] Bernhard N Flury. Multivariate Statistics: A Practical Approach , 1988 .
[17] Peter Filzmoser,et al. Robust fitting of mixtures using the trimmed likelihood estimator , 2007, Comput. Stat. Data Anal..
[18] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..
[19] Bernard D. Flury,et al. Why Multivariate Statistics , 1997 .
[20] G. McLachlan. On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .
[21] David J. Olive,et al. Inconsistency of Resampling Algorithms for High-Breakdown Regression Estimators and a New Algorithm , 2002 .
[22] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[23] J. Hartigan,et al. Percentage Points of a Test for Clusters , 1969 .
[24] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .
[25] F. Marriott. Practical problems in a method of cluster analysis. , 1971, Biometrics.
[26] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[27] M. Gallegos,et al. A robust method for cluster analysis , 2005, math/0504513.
[28] P. Rousseeuw,et al. A fast algorithm for the minimum covariance determinant estimator , 1999 .
[29] David L. Woodruff,et al. Experiments with, and on, algorithms for maximum likelihood clustering , 2004, Comput. Stat. Data Anal..
[30] Gunter Ritter,et al. Using combinatorial optimization in model-based trimmed clustering with cardinality constraints , 2010, Comput. Stat. Data Anal..
[31] Carlos Matrán,et al. Robust estimation in the normal mixture model based on robust clustering , 2008 .
[32] Christian Hennig,et al. Asymmetric Linear Dimension Reduction for Classification , 2004 .
[33] Peter Filzmoser,et al. MIXTURE OF GLMS AND THE TRIMMED LIKELIHOOD METHODOLOGY , 2004 .
[34] H. Riedwyl,et al. Multivariate Statistics: A Practical Approach , 1988 .
[35] J. A. Cuesta-Albertos,et al. Trimmed $k$-means: an attempt to robustify quantizers , 1997 .
[36] A. Scott,et al. Clustering methods based on likelihood ratio criteria. , 1971 .
[37] Xiaogang Wang,et al. Linear grouping using orthogonal regression , 2006, Comput. Stat. Data Anal..
[38] Hans-Hermann Bock,et al. Classification, Clustering, and Data Analysis: Recent Advances and Applications , 2002 .
[39] T. Caliński,et al. A dendrite method for cluster analysis , 1974 .
[40] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[41] Peter G. Bryant,et al. Large-sample results for optimization-based clustering methods , 1991 .
[42] David L. Woodruff,et al. Computational Connections between Robust Multivariate Analysis and Clustering , 2002, COMPSTAT.
[43] A. Raftery,et al. Detecting features in spatial point processes with clutter via model-based clustering , 1998 .
[44] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[45] G. Celeux,et al. A Classification EM algorithm for clustering and two stochastic versions , 1992 .
[46] J. Wolfe. PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.
[47] R. Hathaway. A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions , 1985 .
[48] Ursula Gather,et al. The Masking Breakdown Point of Multivariate Outlier Identification Rules , 1999 .
[49] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[50] H. P. Friedman,et al. On Some Invariant Criteria for Grouping Data , 1967 .
[51] María Teresa Gallegos,et al. Maximum Likelihood Clustering with Outliers , 2002 .