Omega-K Imaging Algorithm for One-Stationary Bistatic SAR

In bistatic synthetic aperture radar (BSAR) with one-stationary station, azimuth variation is a major problem. In this paper, based on the two-dimensional (2D) spatial linearization of the accurate analytical point target reference spectrum, an Omega-K imaging algorithm to deal with this problem is proposed. Different from the traditional Omega-K algorithms for monostatic SAR and translational invariant BSAR, the approach uses a 2D Stolt frequency transformation. In addition, a compensation method for the phase error caused by the linearization and the related geometry registration are also discussed. Numerical simulations verify the effectiveness of the proposed method.

[1]  Marwan Younis,et al.  First bistatic spaceborne SAR experiments with TanDEM-X , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Mats I. Pettersson,et al.  Space time adaptive processing for moving target detection and imaging in bistatic SAR , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Zheng Bao,et al.  Bistatic SAR Data Focusing Using an Omega-K Algorithm Based on Method of Series Reversion , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Xin Wang,et al.  Space-Variant Filtering for Wavefront Curvature Correction in Polar Formatted Bistatic SAR Image , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Gang Li,et al.  Bistatic Linear Antenna Array SAR for Moving Target Detection, Location, and Imaging With Two Passive Airborne Radars , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Amit Kumar Mishra,et al.  Automatic Target Recognition using Multipolar Bistatic Synthetic Aperture Radar Images , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Mandy Eberhart,et al.  Spotlight Synthetic Aperture Radar Signal Processing Algorithms , 2016 .

[8]  Tat Soon Yeo,et al.  New applications of nonlinear chirp scaling in SAR data processing , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Junjie Wu,et al.  Bistatic forward-looking SAR: Theory and challenges , 2009, 2009 IEEE Radar Conference.

[10]  R.L. Moses,et al.  Polar format algorithm for bistatic SAR , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Joachim H. G. Ender,et al.  Focusing Bistatic SAR Data in Airborne/Stationary Configuration , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Chibiao Ding,et al.  An Improved NLCS Algorithm With Capability Analysis for One-Stationary BiSAR , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  R Wang,et al.  Frequency-Domain Bistatic SAR Processing for Spaceborne/Airborne Configuration , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Junjie Wu,et al.  Spatial Variance of Bistatic SAR with One Fixed Station , 2012, IEICE transactions on communications.

[15]  Kenneth James,et al.  The RADARSAT-2&3 topographic mission: an overview , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[16]  Chibiao Ding,et al.  An Omega-K Algorithm With Phase Error Compensation for Bistatic SAR of a Translational Invariant Case , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Joachim H. G. Ender,et al.  Potential and limitations of forward-looking bistatic SAR , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Dario Tarchi,et al.  A ground-based parasitic SAR experiment , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Chibiao Ding,et al.  Some Reflections on Bistatic SAR of Forward-Looking Configuration , 2008, IEEE Geoscience and Remote Sensing Letters.

[20]  Paco López-Dekker,et al.  Single-Pass Bistatic SAR Interferometry Using Fixed-Receiver Configurations: Theory and Experimental Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  K. B. Khadhra SURFACE PARAMETER ESTIMATION USING BISTATIC POLARIMETRIC X-BAND MEASUREMENTS , 2012 .

[22]  Gerhard Krieger,et al.  Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying , 2010, Proceedings of the IEEE.

[23]  Mikhail Cherniakov,et al.  Space-Surface Bistatic SAR Image Formation Algorithms , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[24]  G. Yates,et al.  Bistatic SAR image formation , 2006 .

[25]  A. Moccia,et al.  Performance of spaceborne bistatic synthetic aperture radar , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Q. Liu,et al.  An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's) , 1998 .

[27]  Tao Zeng,et al.  Generalized approach to resolution analysis in BSAR , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Amedeo Capozzoli,et al.  GPU-BASED Ï-K TOMOGRAPHIC PROCESSING BY 1D NON-UNIFORM FFTS , 2012 .

[29]  Jong-Tae Lim,et al.  Omega-k Algorithm for Airborne Spatial Invariant Bistatic Spotlight SAR Imaging , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[31]  Gerhard Krieger,et al.  Efficient Time-Domain Image Formation with Precise Topography Accommodation for General Bistatic SAR Configurations , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[33]  G. Krieger,et al.  ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets , 2006 .

[34]  J.M. Lopez-Sanchez,et al.  An approach to SAR imaging by means of non-uniform FFTs , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).