Decentralized controllers for shape generation with robotic swarms

We address the synthesis of controllers for a swarm of robots to generate a desired two-dimensional geometric pattern specified by a simple closed planar curve with local interactions for avoiding collisions or maintaining specified relative distance constraints. The controllers are decentralized in the sense that the robots do not need to exchange or know each other's state information. Instead, we assume that the robots have sensors allowing them to obtain information about relative positions of neighbors within a known range. We establish stability and convergence properties of the controllers for a certain class of simple closed curves. We illustrate our approach through simulations and consider extensions to more general planar curves.

[1]  M. Ani Hsieh,et al.  Pattern generation with multiple robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[3]  George J. Pappas,et al.  Coordination of Multiple Autonomous Vehicles , 2003 .

[4]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[5]  Vijay Kumar,et al.  Controlling three dimensional swarms of robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Amit Kumar,et al.  Formation Stabilization of Multiple Agents Using Decentralized Navigation Functions , 2005, Robotics: Science and Systems.

[7]  Nikolaus Correll,et al.  Comparing Coordination Schemes for Miniature Robotic Swarms: A Case Study in Boundary Coverage of Regular Structures , 2006, ISER.

[8]  Vijay Kumar,et al.  A potential field based approach to multi-robot manipulation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Petter Ögren,et al.  Formations with a Mission: Stable Coordination of Vehicle Group Maneuvers , 2002 .

[10]  Vijay Kumar,et al.  Cooperative Control of Robot Formations , 2002 .

[11]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[12]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[13]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[14]  Masafumi Yamashita,et al.  Erratum: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 2006, SIAM J. Comput..

[15]  Vijay Kumar,et al.  Controlling Swarms of Robots Using Interpolated Implicit Functions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  Nikolaus Correll,et al.  System Identification of Self-Organizing Robotic Swarms , 2006, DARS.

[17]  O. Albayrak Line and circle formation of distributed autonomous mobile robots with limited sensor range , 1996 .

[18]  James F. O'Brien,et al.  Implicit surfaces that interpolate , 2001, Proceedings International Conference on Shape Modeling and Applications.

[19]  Kostas J. Kyriakopoulos,et al.  A feedback-based multiagent navigation framework , 2006, Int. J. Syst. Sci..

[20]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[21]  Diana F. Spears,et al.  Robotic simulation of gases for a surveillance task , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[23]  Andrea L. Bertozzi,et al.  Determining Environmental Boundaries: Asynchronous Communication and Physical Scales , 2005 .

[24]  Naomi Ehrich Leonard,et al.  Control of coordinated patterns for ocean sampling , 2007, Int. J. Control.

[25]  Vijay Kumar,et al.  Abstraction and Control for Swarms of Robots , 2003, ISRR.

[26]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[27]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[28]  Naomi Ehrich Leonard,et al.  Collective Motion of Self-Propelled Particles: Stabilizing Symmetric Formations on Closed Curves , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[29]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[30]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[31]  Rafael B. Fierro,et al.  Optimal Positioning Strategies for Shape Changes in Robot Teams , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[32]  Fumin Zhang,et al.  Control of small formations using shape coordinates , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[33]  Naomi Ehrich Leonard,et al.  Shape Control of a Multi-agent System Using Tensegrity Structures , 2007 .

[34]  P. Stander,et al.  Cooperative hunting in lions: the role of the individual , 1992, Behavioral Ecology and Sociobiology.

[35]  Vijay Kumar,et al.  Decentralized Algorithms for Multi-Robot Manipulation via Caging , 2004, Int. J. Robotics Res..

[36]  Luiz Chaimowicz,et al.  Aerial Shepherds: Coordination among UAVs and Swarms of Robots , 2004, DARS.

[37]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[38]  T. Seeley,et al.  Deciding on a new home: how do honeybees agree? , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces , 1952, Nature.

[40]  Naomi Ehrich Leonard,et al.  Coordinated patterns of unit speed particles on a closed curve , 2007, Syst. Control. Lett..

[41]  S. Pratt Quorum sensing by encounter rates in the ant Temnothorax albipennis , 2005 .