From High Energy Physics to Low Level Vision

A geometric framework for image scale space, enhancement, and segmentation is presented. We consider intensity images as surfaces in the (x, I) space. The image is thereby a 2D surface in 3D space for gray level images, and a 2D surface in 5D for color images. The new formulation unifies many classical schemes and algorithms via a simple scaling of the intensity contrast, and results in new and efficient schemes. Extensions to multi dimensional signals become natural and lead to powerful denoising and scale space algorithms. Here, we demonstrate the proposed framework by applying it to denoise and improve gray level and color images.

[1]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[2]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[3]  Ron Kimmel,et al.  Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[4]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[5]  David Mumford,et al.  Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[6]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[7]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  James A. Sethian,et al.  Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..

[9]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[10]  Joyant Shah,et al.  Curve evolution and segmentation functionals: application to color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[11]  R. Kimmel,et al.  On the Geometry of Texture , 1996 .

[12]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[14]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[16]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Thomas Richardson,et al.  Approximation, Computation, and Distortion in the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[18]  Antonin Chambolle,et al.  Partial differential equations and image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[19]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[20]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[21]  W. Eric L. Grimson,et al.  From images to surfaces , 1981 .

[22]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[23]  Gary E. Ford,et al.  Invariance of edges and corners under mean-curvature diffusions of images , 1995, Electronic Imaging.

[24]  Jean-Michel Morel,et al.  Morphological Approach to Multiscale Analysis: From Principles to Equations , 1994, Geometry-Driven Diffusion in Computer Vision.

[25]  Max A. Viergever,et al.  Nonlinear scale-space , 1995, Image Vis. Comput..

[26]  P. Concus Numerical solution of the minimal surface equation , 1967 .

[27]  Ron Kimmel What is a Natural Norm for Multi Channel Image Processing , 1997 .

[28]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[29]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[30]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[31]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[32]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[33]  Physics Letters , 1962, Nature.

[34]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[35]  Øivind Due Trier,et al.  Evaluation of Binarization Methods for Document Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[37]  Ron Kimmel,et al.  Images as embedding maps and minimal surfaces: movies, color, and volumetric medical images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.